Loading…
putEMG-A Surface Electromyography Hand Gesture Recognition Dataset
In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-08, Vol.19 (16), p.3548 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03 |
container_end_page | |
container_issue | 16 |
container_start_page | 3548 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Kaczmarek, Piotr Mańkowski, Tomasz Tomczyński, Jakub |
description | In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. The putEMG dataset is available under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. An accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. The presented dataset can be used as a benchmark for various classification methods, the evaluation of electrode localisation concepts, or the development of classification methods invariant to user-specific features or electrode displacement. |
doi_str_mv | 10.3390/s19163548 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_65d214658cd34671a6b870793a7160e5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_65d214658cd34671a6b870793a7160e5</doaj_id><sourcerecordid>2275317440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03</originalsourceid><addsrcrecordid>eNpdkUtrGzEUhUVoyatd9A-UgW6axbSSrl7eFNLEcQIJgTZ7cS1pnDHjkStpCv73HceJSbq5upIOH4dzCPnE6DeACf2e2YQpkMIckGMmuKgN5_Tdq_2InOS8pJQDgDkkR8AEU1yyY_JzPZTp3aw-r34PqUEXqmkXXElxtYmLhOvHTXWNva9mIZchhepXcHHRt6WNfXWJBXMoH8j7BrscPj6fp-ThavpwcV3f3s9uLs5vaye1LDXXTBpoHG_GKRyTivO5Ai89xYnRGkY_lCqlDSLFxgs0qIVn41WaOYVTcrPD-ohLu07tCtPGRmzt00NMC4uptK4LVknPmVDSOA9CaYZqbjTVE0DNFA1yZP3YsdbDfBW8C31J2L2Bvv3p20e7iH-t0pxKugV8fQak-GcYs7GrNrvQddiHOGTLuZbAtBBb31_-ky7jkPoxKcuBMgNCwBZ4tlO5FHNOodmbYdRuS7b7kkft59fu98qXVuEfDLuerA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301834435</pqid></control><display><type>article</type><title>putEMG-A Surface Electromyography Hand Gesture Recognition Dataset</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kaczmarek, Piotr ; Mańkowski, Tomasz ; Tomczyński, Jakub</creator><creatorcontrib>Kaczmarek, Piotr ; Mańkowski, Tomasz ; Tomczyński, Jakub</creatorcontrib><description>In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. The putEMG dataset is available under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. An accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. The presented dataset can be used as a benchmark for various classification methods, the evaluation of electrode localisation concepts, or the development of classification methods invariant to user-specific features or electrode displacement.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19163548</identifier><identifier>PMID: 31416251</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Adult ; Algorithms ; Classification ; dataset ; Datasets ; Discriminant Analysis ; Electrodes ; Electromyography ; Electromyography - methods ; Female ; Gesture recognition ; Gestures ; hand ; Hand - physiology ; human-machine interface ; Humans ; International conferences ; Laboratories ; Male ; Muscle function ; Robotics ; sEMG ; Signal processing ; Signal-To-Noise Ratio ; Support Vector Machine ; Support vector machines ; Video data ; Wavelet transforms ; wearable ; Wearable Electronic Devices ; Young Adult</subject><ispartof>Sensors (Basel, Switzerland), 2019-08, Vol.19 (16), p.3548</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03</citedby><cites>FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03</cites><orcidid>0000-0001-9958-8323 ; 0000-0002-0625-3960 ; 0000-0002-5340-2375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301834435/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301834435?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,36989,44565,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31416251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaczmarek, Piotr</creatorcontrib><creatorcontrib>Mańkowski, Tomasz</creatorcontrib><creatorcontrib>Tomczyński, Jakub</creatorcontrib><title>putEMG-A Surface Electromyography Hand Gesture Recognition Dataset</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. The putEMG dataset is available under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. An accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. The presented dataset can be used as a benchmark for various classification methods, the evaluation of electrode localisation concepts, or the development of classification methods invariant to user-specific features or electrode displacement.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Classification</subject><subject>dataset</subject><subject>Datasets</subject><subject>Discriminant Analysis</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>Female</subject><subject>Gesture recognition</subject><subject>Gestures</subject><subject>hand</subject><subject>Hand - physiology</subject><subject>human-machine interface</subject><subject>Humans</subject><subject>International conferences</subject><subject>Laboratories</subject><subject>Male</subject><subject>Muscle function</subject><subject>Robotics</subject><subject>sEMG</subject><subject>Signal processing</subject><subject>Signal-To-Noise Ratio</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Video data</subject><subject>Wavelet transforms</subject><subject>wearable</subject><subject>Wearable Electronic Devices</subject><subject>Young Adult</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtrGzEUhUVoyatd9A-UgW6axbSSrl7eFNLEcQIJgTZ7cS1pnDHjkStpCv73HceJSbq5upIOH4dzCPnE6DeACf2e2YQpkMIckGMmuKgN5_Tdq_2InOS8pJQDgDkkR8AEU1yyY_JzPZTp3aw-r34PqUEXqmkXXElxtYmLhOvHTXWNva9mIZchhepXcHHRt6WNfXWJBXMoH8j7BrscPj6fp-ThavpwcV3f3s9uLs5vaye1LDXXTBpoHG_GKRyTivO5Ai89xYnRGkY_lCqlDSLFxgs0qIVn41WaOYVTcrPD-ohLu07tCtPGRmzt00NMC4uptK4LVknPmVDSOA9CaYZqbjTVE0DNFA1yZP3YsdbDfBW8C31J2L2Bvv3p20e7iH-t0pxKugV8fQak-GcYs7GrNrvQddiHOGTLuZbAtBBb31_-ky7jkPoxKcuBMgNCwBZ4tlO5FHNOodmbYdRuS7b7kkft59fu98qXVuEfDLuerA</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Kaczmarek, Piotr</creator><creator>Mańkowski, Tomasz</creator><creator>Tomczyński, Jakub</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9958-8323</orcidid><orcidid>https://orcid.org/0000-0002-0625-3960</orcidid><orcidid>https://orcid.org/0000-0002-5340-2375</orcidid></search><sort><creationdate>20190814</creationdate><title>putEMG-A Surface Electromyography Hand Gesture Recognition Dataset</title><author>Kaczmarek, Piotr ; Mańkowski, Tomasz ; Tomczyński, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Classification</topic><topic>dataset</topic><topic>Datasets</topic><topic>Discriminant Analysis</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>Female</topic><topic>Gesture recognition</topic><topic>Gestures</topic><topic>hand</topic><topic>Hand - physiology</topic><topic>human-machine interface</topic><topic>Humans</topic><topic>International conferences</topic><topic>Laboratories</topic><topic>Male</topic><topic>Muscle function</topic><topic>Robotics</topic><topic>sEMG</topic><topic>Signal processing</topic><topic>Signal-To-Noise Ratio</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Video data</topic><topic>Wavelet transforms</topic><topic>wearable</topic><topic>Wearable Electronic Devices</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaczmarek, Piotr</creatorcontrib><creatorcontrib>Mańkowski, Tomasz</creatorcontrib><creatorcontrib>Tomczyński, Jakub</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaczmarek, Piotr</au><au>Mańkowski, Tomasz</au><au>Tomczyński, Jakub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>putEMG-A Surface Electromyography Hand Gesture Recognition Dataset</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-08-14</date><risdate>2019</risdate><volume>19</volume><issue>16</issue><spage>3548</spage><pages>3548-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. The putEMG dataset is available under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. An accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. The presented dataset can be used as a benchmark for various classification methods, the evaluation of electrode localisation concepts, or the development of classification methods invariant to user-specific features or electrode displacement.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31416251</pmid><doi>10.3390/s19163548</doi><orcidid>https://orcid.org/0000-0001-9958-8323</orcidid><orcidid>https://orcid.org/0000-0002-0625-3960</orcidid><orcidid>https://orcid.org/0000-0002-5340-2375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-08, Vol.19 (16), p.3548 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_65d214658cd34671a6b870793a7160e5 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Accuracy Adult Algorithms Classification dataset Datasets Discriminant Analysis Electrodes Electromyography Electromyography - methods Female Gesture recognition Gestures hand Hand - physiology human-machine interface Humans International conferences Laboratories Male Muscle function Robotics sEMG Signal processing Signal-To-Noise Ratio Support Vector Machine Support vector machines Video data Wavelet transforms wearable Wearable Electronic Devices Young Adult |
title | putEMG-A Surface Electromyography Hand Gesture Recognition Dataset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=putEMG-A%20Surface%20Electromyography%20Hand%20Gesture%20Recognition%20Dataset&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Kaczmarek,%20Piotr&rft.date=2019-08-14&rft.volume=19&rft.issue=16&rft.spage=3548&rft.pages=3548-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19163548&rft_dat=%3Cproquest_doaj_%3E2275317440%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301834435&rft_id=info:pmid/31416251&rfr_iscdi=true |