Loading…

putEMG-A Surface Electromyography Hand Gesture Recognition Dataset

In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-08, Vol.19 (16), p.3548
Main Authors: Kaczmarek, Piotr, Mańkowski, Tomasz, Tomczyński, Jakub
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03
cites cdi_FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03
container_end_page
container_issue 16
container_start_page 3548
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Kaczmarek, Piotr
Mańkowski, Tomasz
Tomczyński, Jakub
description In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. The putEMG dataset is available under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. An accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. The presented dataset can be used as a benchmark for various classification methods, the evaluation of electrode localisation concepts, or the development of classification methods invariant to user-specific features or electrode displacement.
doi_str_mv 10.3390/s19163548
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_65d214658cd34671a6b870793a7160e5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_65d214658cd34671a6b870793a7160e5</doaj_id><sourcerecordid>2275317440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03</originalsourceid><addsrcrecordid>eNpdkUtrGzEUhUVoyatd9A-UgW6axbSSrl7eFNLEcQIJgTZ7cS1pnDHjkStpCv73HceJSbq5upIOH4dzCPnE6DeACf2e2YQpkMIckGMmuKgN5_Tdq_2InOS8pJQDgDkkR8AEU1yyY_JzPZTp3aw-r34PqUEXqmkXXElxtYmLhOvHTXWNva9mIZchhepXcHHRt6WNfXWJBXMoH8j7BrscPj6fp-ThavpwcV3f3s9uLs5vaye1LDXXTBpoHG_GKRyTivO5Ai89xYnRGkY_lCqlDSLFxgs0qIVn41WaOYVTcrPD-ohLu07tCtPGRmzt00NMC4uptK4LVknPmVDSOA9CaYZqbjTVE0DNFA1yZP3YsdbDfBW8C31J2L2Bvv3p20e7iH-t0pxKugV8fQak-GcYs7GrNrvQddiHOGTLuZbAtBBb31_-ky7jkPoxKcuBMgNCwBZ4tlO5FHNOodmbYdRuS7b7kkft59fu98qXVuEfDLuerA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301834435</pqid></control><display><type>article</type><title>putEMG-A Surface Electromyography Hand Gesture Recognition Dataset</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kaczmarek, Piotr ; Mańkowski, Tomasz ; Tomczyński, Jakub</creator><creatorcontrib>Kaczmarek, Piotr ; Mańkowski, Tomasz ; Tomczyński, Jakub</creatorcontrib><description>In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. The putEMG dataset is available under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. An accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. The presented dataset can be used as a benchmark for various classification methods, the evaluation of electrode localisation concepts, or the development of classification methods invariant to user-specific features or electrode displacement.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19163548</identifier><identifier>PMID: 31416251</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Adult ; Algorithms ; Classification ; dataset ; Datasets ; Discriminant Analysis ; Electrodes ; Electromyography ; Electromyography - methods ; Female ; Gesture recognition ; Gestures ; hand ; Hand - physiology ; human-machine interface ; Humans ; International conferences ; Laboratories ; Male ; Muscle function ; Robotics ; sEMG ; Signal processing ; Signal-To-Noise Ratio ; Support Vector Machine ; Support vector machines ; Video data ; Wavelet transforms ; wearable ; Wearable Electronic Devices ; Young Adult</subject><ispartof>Sensors (Basel, Switzerland), 2019-08, Vol.19 (16), p.3548</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03</citedby><cites>FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03</cites><orcidid>0000-0001-9958-8323 ; 0000-0002-0625-3960 ; 0000-0002-5340-2375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301834435/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301834435?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,36989,44565,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31416251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaczmarek, Piotr</creatorcontrib><creatorcontrib>Mańkowski, Tomasz</creatorcontrib><creatorcontrib>Tomczyński, Jakub</creatorcontrib><title>putEMG-A Surface Electromyography Hand Gesture Recognition Dataset</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. The putEMG dataset is available under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. An accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. The presented dataset can be used as a benchmark for various classification methods, the evaluation of electrode localisation concepts, or the development of classification methods invariant to user-specific features or electrode displacement.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Classification</subject><subject>dataset</subject><subject>Datasets</subject><subject>Discriminant Analysis</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>Female</subject><subject>Gesture recognition</subject><subject>Gestures</subject><subject>hand</subject><subject>Hand - physiology</subject><subject>human-machine interface</subject><subject>Humans</subject><subject>International conferences</subject><subject>Laboratories</subject><subject>Male</subject><subject>Muscle function</subject><subject>Robotics</subject><subject>sEMG</subject><subject>Signal processing</subject><subject>Signal-To-Noise Ratio</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Video data</subject><subject>Wavelet transforms</subject><subject>wearable</subject><subject>Wearable Electronic Devices</subject><subject>Young Adult</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtrGzEUhUVoyatd9A-UgW6axbSSrl7eFNLEcQIJgTZ7cS1pnDHjkStpCv73HceJSbq5upIOH4dzCPnE6DeACf2e2YQpkMIckGMmuKgN5_Tdq_2InOS8pJQDgDkkR8AEU1yyY_JzPZTp3aw-r34PqUEXqmkXXElxtYmLhOvHTXWNva9mIZchhepXcHHRt6WNfXWJBXMoH8j7BrscPj6fp-ThavpwcV3f3s9uLs5vaye1LDXXTBpoHG_GKRyTivO5Ai89xYnRGkY_lCqlDSLFxgs0qIVn41WaOYVTcrPD-ohLu07tCtPGRmzt00NMC4uptK4LVknPmVDSOA9CaYZqbjTVE0DNFA1yZP3YsdbDfBW8C31J2L2Bvv3p20e7iH-t0pxKugV8fQak-GcYs7GrNrvQddiHOGTLuZbAtBBb31_-ky7jkPoxKcuBMgNCwBZ4tlO5FHNOodmbYdRuS7b7kkft59fu98qXVuEfDLuerA</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Kaczmarek, Piotr</creator><creator>Mańkowski, Tomasz</creator><creator>Tomczyński, Jakub</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9958-8323</orcidid><orcidid>https://orcid.org/0000-0002-0625-3960</orcidid><orcidid>https://orcid.org/0000-0002-5340-2375</orcidid></search><sort><creationdate>20190814</creationdate><title>putEMG-A Surface Electromyography Hand Gesture Recognition Dataset</title><author>Kaczmarek, Piotr ; Mańkowski, Tomasz ; Tomczyński, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Classification</topic><topic>dataset</topic><topic>Datasets</topic><topic>Discriminant Analysis</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>Female</topic><topic>Gesture recognition</topic><topic>Gestures</topic><topic>hand</topic><topic>Hand - physiology</topic><topic>human-machine interface</topic><topic>Humans</topic><topic>International conferences</topic><topic>Laboratories</topic><topic>Male</topic><topic>Muscle function</topic><topic>Robotics</topic><topic>sEMG</topic><topic>Signal processing</topic><topic>Signal-To-Noise Ratio</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Video data</topic><topic>Wavelet transforms</topic><topic>wearable</topic><topic>Wearable Electronic Devices</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaczmarek, Piotr</creatorcontrib><creatorcontrib>Mańkowski, Tomasz</creatorcontrib><creatorcontrib>Tomczyński, Jakub</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaczmarek, Piotr</au><au>Mańkowski, Tomasz</au><au>Tomczyński, Jakub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>putEMG-A Surface Electromyography Hand Gesture Recognition Dataset</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-08-14</date><risdate>2019</risdate><volume>19</volume><issue>16</issue><spage>3548</spage><pages>3548-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this paper, we present a putEMG dataset intended for the evaluation of hand gesture recognition methods based on sEMG signal. The dataset was acquired for 44 able-bodied subjects and include 8 gestures (3 full hand gestures, 4 pinches and idle). It consists of uninterrupted recordings of 24 sEMG channels from the subject's forearm, RGB video stream and depth camera images used for hand motion tracking. Moreover, exemplary processing scripts are also published. The putEMG dataset is available under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The dataset was validated regarding sEMG amplitudes and gesture recognition performance. The classification was performed using state-of-the-art classifiers and feature sets. An accuracy of 90% was achieved for SVM classifier utilising RMS feature and for LDA classifier using Hudgin's and Du's feature sets. Analysis of performance for particular gestures showed that LDA/Du combination has significantly higher accuracy for full hand gestures, while SVM/RMS performs better for pinch gestures. The presented dataset can be used as a benchmark for various classification methods, the evaluation of electrode localisation concepts, or the development of classification methods invariant to user-specific features or electrode displacement.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31416251</pmid><doi>10.3390/s19163548</doi><orcidid>https://orcid.org/0000-0001-9958-8323</orcidid><orcidid>https://orcid.org/0000-0002-0625-3960</orcidid><orcidid>https://orcid.org/0000-0002-5340-2375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-08, Vol.19 (16), p.3548
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_65d214658cd34671a6b870793a7160e5
source Publicly Available Content (ProQuest); PubMed Central
subjects Accuracy
Adult
Algorithms
Classification
dataset
Datasets
Discriminant Analysis
Electrodes
Electromyography
Electromyography - methods
Female
Gesture recognition
Gestures
hand
Hand - physiology
human-machine interface
Humans
International conferences
Laboratories
Male
Muscle function
Robotics
sEMG
Signal processing
Signal-To-Noise Ratio
Support Vector Machine
Support vector machines
Video data
Wavelet transforms
wearable
Wearable Electronic Devices
Young Adult
title putEMG-A Surface Electromyography Hand Gesture Recognition Dataset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=putEMG-A%20Surface%20Electromyography%20Hand%20Gesture%20Recognition%20Dataset&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Kaczmarek,%20Piotr&rft.date=2019-08-14&rft.volume=19&rft.issue=16&rft.spage=3548&rft.pages=3548-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19163548&rft_dat=%3Cproquest_doaj_%3E2275317440%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-271583fc2f83f4c15622b63d5d0a98773251006678aa0afd4a8a74d18aa58b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301834435&rft_id=info:pmid/31416251&rfr_iscdi=true