Loading…

Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells

Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit i...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-08, Vol.13 (1), p.4554-16, Article 4554
Main Authors: Tan, Yuying, Li, Junjie, Zhao, Guangyuan, Huang, Kai-Chih, Cardenas, Horacio, Wang, Yinu, Matei, Daniela, Cheng, Ji-Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit increased fatty acids (FA) uptake, accompanied by decreased glucose uptake and lipogenesis, indicating reprogramming from glucose to FA dependent anabolic and energy metabolism. A metabolic index incorporating glucose derived anabolism and FA uptake correlates linearly to the level of cisplatin resistance in ovarian cancer (OC) cell lines and primary cells. The increased FA uptake facilitates cancer cell survival under cisplatin-induced oxidative stress by enhancing beta-oxidation. Consequently, blocking beta-oxidation by a small molecule inhibitor combined with cisplatin or carboplatin synergistically suppresses OC proliferation in vitro and growth of patient-derived xenografts in vivo. Collectively, these findings support a rapid detection method of cisplatin-resistance at single cell level and a strategy for treating cisplatin-resistant tumors. Metabolic reprogramming is associated with cancer initiation, progression and resistance to therapy. Here, the authors show that metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation is associated with cancer-cell platinum-based chemotherapy resistance.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32101-w