Loading…
Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells
Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit i...
Saved in:
Published in: | Nature communications 2022-08, Vol.13 (1), p.4554-16, Article 4554 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-35199eb3c33ea4fdf515962950bc662a56cf34b8367556af116d2a7000c7f3763 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-35199eb3c33ea4fdf515962950bc662a56cf34b8367556af116d2a7000c7f3763 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 4554 |
container_title | Nature communications |
container_volume | 13 |
creator | Tan, Yuying Li, Junjie Zhao, Guangyuan Huang, Kai-Chih Cardenas, Horacio Wang, Yinu Matei, Daniela Cheng, Ji-Xin |
description | Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit increased fatty acids (FA) uptake, accompanied by decreased glucose uptake and lipogenesis, indicating reprogramming from glucose to FA dependent anabolic and energy metabolism. A metabolic index incorporating glucose derived anabolism and FA uptake correlates linearly to the level of cisplatin resistance in ovarian cancer (OC) cell lines and primary cells. The increased FA uptake facilitates cancer cell survival under cisplatin-induced oxidative stress by enhancing beta-oxidation. Consequently, blocking beta-oxidation by a small molecule inhibitor combined with cisplatin or carboplatin synergistically suppresses OC proliferation in vitro and growth of patient-derived xenografts in vivo. Collectively, these findings support a rapid detection method of cisplatin-resistance at single cell level and a strategy for treating cisplatin-resistant tumors.
Metabolic reprogramming is associated with cancer initiation, progression and resistance to therapy. Here, the authors show that metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation is associated with cancer-cell platinum-based chemotherapy resistance. |
doi_str_mv | 10.1038/s41467-022-32101-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_65e7d80db4764219a65df7b321e8f777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_65e7d80db4764219a65df7b321e8f777</doaj_id><sourcerecordid>2698989180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-35199eb3c33ea4fdf515962950bc662a56cf34b8367556af116d2a7000c7f3763</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAllgHfIntZIOEKi6VitjA2pr4EnxI7GA7lPP2mKaUdoO98Mjzzzce_03znOBXBLP-de5IJ2SLKW0ZJZi014-aU4o70hJJ2eN78UlznvMB18UG0nfd0-aE8YERIcVpkz7ZAmOcvUbJrilOCZbFhwm5FBc0zUcd52P2GZWIHJRyRKC9Qdta4LtFEAwaK6CNv7yB4mNAPqB1rmHYljbZWlkgFKQhaJuQtvOcnzVPHMzZnt-eZ83X9---XHxsrz5_uLx4e9Vq3uHSMk6GwY5MM2ahc8ZxwgdBB45HLQQFLrRj3dgzITkX4AgRhoKsY2rpmBTsrLncuSbCQa3JL5COKoJXNxcxTQpS8Xq2SnArTY_N2EnRUTKA4MbJsX6s7Z2UsrLe7Kx1GxdrtA0lwfwA-jAT_Dc1xZ9qYFwQ1lfAy1tAij82m4s6xC2FOr-iYujrJj2uKrqrdIo5J-vuOhCs_tiudttVtV3d2K6ua9GL-2-7K_lrchWwXZBrKkw2_ev9H-xvVxu6aQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698989180</pqid></control><display><type>article</type><title>Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells</title><source>Springer Nature - Connect here FIRST to enable access</source><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tan, Yuying ; Li, Junjie ; Zhao, Guangyuan ; Huang, Kai-Chih ; Cardenas, Horacio ; Wang, Yinu ; Matei, Daniela ; Cheng, Ji-Xin</creator><creatorcontrib>Tan, Yuying ; Li, Junjie ; Zhao, Guangyuan ; Huang, Kai-Chih ; Cardenas, Horacio ; Wang, Yinu ; Matei, Daniela ; Cheng, Ji-Xin</creatorcontrib><description>Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit increased fatty acids (FA) uptake, accompanied by decreased glucose uptake and lipogenesis, indicating reprogramming from glucose to FA dependent anabolic and energy metabolism. A metabolic index incorporating glucose derived anabolism and FA uptake correlates linearly to the level of cisplatin resistance in ovarian cancer (OC) cell lines and primary cells. The increased FA uptake facilitates cancer cell survival under cisplatin-induced oxidative stress by enhancing beta-oxidation. Consequently, blocking beta-oxidation by a small molecule inhibitor combined with cisplatin or carboplatin synergistically suppresses OC proliferation in vitro and growth of patient-derived xenografts in vivo. Collectively, these findings support a rapid detection method of cisplatin-resistance at single cell level and a strategy for treating cisplatin-resistant tumors.
Metabolic reprogramming is associated with cancer initiation, progression and resistance to therapy. Here, the authors show that metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation is associated with cancer-cell platinum-based chemotherapy resistance.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-32101-w</identifier><identifier>PMID: 35931676</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 14/34 ; 140/133 ; 38 ; 38/109 ; 45/77 ; 631/1647/245/2226 ; 631/67/1059/2326 ; 631/67/2327 ; 64/60 ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Cancer ; Carboplatin ; Cell Line, Tumor ; Cell survival ; Chemoresistance ; Chemotherapy ; Cisplatin ; Cisplatin - pharmacology ; Cisplatin - therapeutic use ; Drug Resistance, Neoplasm ; Energy metabolism ; Fatty acids ; Fatty Acids - pharmacology ; Female ; Glucose ; Glucose - metabolism ; Glycolysis ; Humanities and Social Sciences ; Humans ; In vivo methods and tests ; Lipogenesis ; Metabolism ; multidisciplinary ; Ovarian cancer ; Ovarian Neoplasms - pathology ; Oxidation ; Oxidation resistance ; Oxidative stress ; Platinum ; Platinum - pharmacology ; Raman spectra ; Science ; Science (multidisciplinary) ; Tumor cell lines ; Tumors ; Xenografts ; Xenotransplantation</subject><ispartof>Nature communications, 2022-08, Vol.13 (1), p.4554-16, Article 4554</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-35199eb3c33ea4fdf515962950bc662a56cf34b8367556af116d2a7000c7f3763</citedby><cites>FETCH-LOGICAL-c540t-35199eb3c33ea4fdf515962950bc662a56cf34b8367556af116d2a7000c7f3763</cites><orcidid>0000-0003-2536-4778 ; 0000-0002-5607-6683 ; 0000-0003-4542-300X ; 0000-0002-1095-8875 ; 0000-0003-2169-5035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2698989180/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2698989180?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35931676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Yuying</creatorcontrib><creatorcontrib>Li, Junjie</creatorcontrib><creatorcontrib>Zhao, Guangyuan</creatorcontrib><creatorcontrib>Huang, Kai-Chih</creatorcontrib><creatorcontrib>Cardenas, Horacio</creatorcontrib><creatorcontrib>Wang, Yinu</creatorcontrib><creatorcontrib>Matei, Daniela</creatorcontrib><creatorcontrib>Cheng, Ji-Xin</creatorcontrib><title>Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit increased fatty acids (FA) uptake, accompanied by decreased glucose uptake and lipogenesis, indicating reprogramming from glucose to FA dependent anabolic and energy metabolism. A metabolic index incorporating glucose derived anabolism and FA uptake correlates linearly to the level of cisplatin resistance in ovarian cancer (OC) cell lines and primary cells. The increased FA uptake facilitates cancer cell survival under cisplatin-induced oxidative stress by enhancing beta-oxidation. Consequently, blocking beta-oxidation by a small molecule inhibitor combined with cisplatin or carboplatin synergistically suppresses OC proliferation in vitro and growth of patient-derived xenografts in vivo. Collectively, these findings support a rapid detection method of cisplatin-resistance at single cell level and a strategy for treating cisplatin-resistant tumors.
Metabolic reprogramming is associated with cancer initiation, progression and resistance to therapy. Here, the authors show that metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation is associated with cancer-cell platinum-based chemotherapy resistance.</description><subject>14/19</subject><subject>14/34</subject><subject>140/133</subject><subject>38</subject><subject>38/109</subject><subject>45/77</subject><subject>631/1647/245/2226</subject><subject>631/67/1059/2326</subject><subject>631/67/2327</subject><subject>64/60</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Cancer</subject><subject>Carboplatin</subject><subject>Cell Line, Tumor</subject><subject>Cell survival</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Cisplatin</subject><subject>Cisplatin - pharmacology</subject><subject>Cisplatin - therapeutic use</subject><subject>Drug Resistance, Neoplasm</subject><subject>Energy metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - pharmacology</subject><subject>Female</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycolysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Lipogenesis</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>Ovarian cancer</subject><subject>Ovarian Neoplasms - pathology</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxidative stress</subject><subject>Platinum</subject><subject>Platinum - pharmacology</subject><subject>Raman spectra</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAllgHfIntZIOEKi6VitjA2pr4EnxI7GA7lPP2mKaUdoO98Mjzzzce_03znOBXBLP-de5IJ2SLKW0ZJZi014-aU4o70hJJ2eN78UlznvMB18UG0nfd0-aE8YERIcVpkz7ZAmOcvUbJrilOCZbFhwm5FBc0zUcd52P2GZWIHJRyRKC9Qdta4LtFEAwaK6CNv7yB4mNAPqB1rmHYljbZWlkgFKQhaJuQtvOcnzVPHMzZnt-eZ83X9---XHxsrz5_uLx4e9Vq3uHSMk6GwY5MM2ahc8ZxwgdBB45HLQQFLrRj3dgzITkX4AgRhoKsY2rpmBTsrLncuSbCQa3JL5COKoJXNxcxTQpS8Xq2SnArTY_N2EnRUTKA4MbJsX6s7Z2UsrLe7Kx1GxdrtA0lwfwA-jAT_Dc1xZ9qYFwQ1lfAy1tAij82m4s6xC2FOr-iYujrJj2uKrqrdIo5J-vuOhCs_tiudttVtV3d2K6ua9GL-2-7K_lrchWwXZBrKkw2_ev9H-xvVxu6aQ</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Tan, Yuying</creator><creator>Li, Junjie</creator><creator>Zhao, Guangyuan</creator><creator>Huang, Kai-Chih</creator><creator>Cardenas, Horacio</creator><creator>Wang, Yinu</creator><creator>Matei, Daniela</creator><creator>Cheng, Ji-Xin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2536-4778</orcidid><orcidid>https://orcid.org/0000-0002-5607-6683</orcidid><orcidid>https://orcid.org/0000-0003-4542-300X</orcidid><orcidid>https://orcid.org/0000-0002-1095-8875</orcidid><orcidid>https://orcid.org/0000-0003-2169-5035</orcidid></search><sort><creationdate>20220805</creationdate><title>Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells</title><author>Tan, Yuying ; Li, Junjie ; Zhao, Guangyuan ; Huang, Kai-Chih ; Cardenas, Horacio ; Wang, Yinu ; Matei, Daniela ; Cheng, Ji-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-35199eb3c33ea4fdf515962950bc662a56cf34b8367556af116d2a7000c7f3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14/19</topic><topic>14/34</topic><topic>140/133</topic><topic>38</topic><topic>38/109</topic><topic>45/77</topic><topic>631/1647/245/2226</topic><topic>631/67/1059/2326</topic><topic>631/67/2327</topic><topic>64/60</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Cancer</topic><topic>Carboplatin</topic><topic>Cell Line, Tumor</topic><topic>Cell survival</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Cisplatin</topic><topic>Cisplatin - pharmacology</topic><topic>Cisplatin - therapeutic use</topic><topic>Drug Resistance, Neoplasm</topic><topic>Energy metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - pharmacology</topic><topic>Female</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycolysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Lipogenesis</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>Ovarian cancer</topic><topic>Ovarian Neoplasms - pathology</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxidative stress</topic><topic>Platinum</topic><topic>Platinum - pharmacology</topic><topic>Raman spectra</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Yuying</creatorcontrib><creatorcontrib>Li, Junjie</creatorcontrib><creatorcontrib>Zhao, Guangyuan</creatorcontrib><creatorcontrib>Huang, Kai-Chih</creatorcontrib><creatorcontrib>Cardenas, Horacio</creatorcontrib><creatorcontrib>Wang, Yinu</creatorcontrib><creatorcontrib>Matei, Daniela</creatorcontrib><creatorcontrib>Cheng, Ji-Xin</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Yuying</au><au>Li, Junjie</au><au>Zhao, Guangyuan</au><au>Huang, Kai-Chih</au><au>Cardenas, Horacio</au><au>Wang, Yinu</au><au>Matei, Daniela</au><au>Cheng, Ji-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-08-05</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>4554</spage><epage>16</epage><pages>4554-16</pages><artnum>4554</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit increased fatty acids (FA) uptake, accompanied by decreased glucose uptake and lipogenesis, indicating reprogramming from glucose to FA dependent anabolic and energy metabolism. A metabolic index incorporating glucose derived anabolism and FA uptake correlates linearly to the level of cisplatin resistance in ovarian cancer (OC) cell lines and primary cells. The increased FA uptake facilitates cancer cell survival under cisplatin-induced oxidative stress by enhancing beta-oxidation. Consequently, blocking beta-oxidation by a small molecule inhibitor combined with cisplatin or carboplatin synergistically suppresses OC proliferation in vitro and growth of patient-derived xenografts in vivo. Collectively, these findings support a rapid detection method of cisplatin-resistance at single cell level and a strategy for treating cisplatin-resistant tumors.
Metabolic reprogramming is associated with cancer initiation, progression and resistance to therapy. Here, the authors show that metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation is associated with cancer-cell platinum-based chemotherapy resistance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35931676</pmid><doi>10.1038/s41467-022-32101-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2536-4778</orcidid><orcidid>https://orcid.org/0000-0002-5607-6683</orcidid><orcidid>https://orcid.org/0000-0003-4542-300X</orcidid><orcidid>https://orcid.org/0000-0002-1095-8875</orcidid><orcidid>https://orcid.org/0000-0003-2169-5035</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-08, Vol.13 (1), p.4554-16, Article 4554 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_65e7d80db4764219a65df7b321e8f777 |
source | Springer Nature - Connect here FIRST to enable access; ProQuest - Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14/19 14/34 140/133 38 38/109 45/77 631/1647/245/2226 631/67/1059/2326 631/67/2327 64/60 Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Cancer Carboplatin Cell Line, Tumor Cell survival Chemoresistance Chemotherapy Cisplatin Cisplatin - pharmacology Cisplatin - therapeutic use Drug Resistance, Neoplasm Energy metabolism Fatty acids Fatty Acids - pharmacology Female Glucose Glucose - metabolism Glycolysis Humanities and Social Sciences Humans In vivo methods and tests Lipogenesis Metabolism multidisciplinary Ovarian cancer Ovarian Neoplasms - pathology Oxidation Oxidation resistance Oxidative stress Platinum Platinum - pharmacology Raman spectra Science Science (multidisciplinary) Tumor cell lines Tumors Xenografts Xenotransplantation |
title | Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20reprogramming%20from%20glycolysis%20to%20fatty%20acid%20uptake%20and%20beta-oxidation%20in%20platinum-resistant%20cancer%20cells&rft.jtitle=Nature%20communications&rft.au=Tan,%20Yuying&rft.date=2022-08-05&rft.volume=13&rft.issue=1&rft.spage=4554&rft.epage=16&rft.pages=4554-16&rft.artnum=4554&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-32101-w&rft_dat=%3Cproquest_doaj_%3E2698989180%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-35199eb3c33ea4fdf515962950bc662a56cf34b8367556af116d2a7000c7f3763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2698989180&rft_id=info:pmid/35931676&rfr_iscdi=true |