Loading…
An Improved Multi-Objective Particle Swarm Optimization With TOPSIS and Fuzzy Logic for Optimizing Trapezoidal Labyrinth Weir
Labyrinth Weir (LW) is a popular control structure that passes a significantly higher flow rate compared to the linear weirs. In order to approach the optimal design of a trapezoidal LW, a multi-objective problem is defined to concurrently minimize the LW consumed concrete volume and maximize its di...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.25458-25472 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-33a180fa605a82b5210a5634c3d158b9a6571fa933931a7970abc9bb44799543 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-33a180fa605a82b5210a5634c3d158b9a6571fa933931a7970abc9bb44799543 |
container_end_page | 25472 |
container_issue | |
container_start_page | 25458 |
container_title | IEEE access |
container_volume | 9 |
creator | Mahmoud, Ali Yuan, Xiaohui Kheimi, Marwan Almadani, Mohammad A. Hajilounezhad, Taher Yuan, Yanbin |
description | Labyrinth Weir (LW) is a popular control structure that passes a significantly higher flow rate compared to the linear weirs. In order to approach the optimal design of a trapezoidal LW, a multi-objective problem is defined to concurrently minimize the LW consumed concrete volume and maximize its discharge capacity. Simultaneously, a Radial Basis function Neural Networks (RBFNN) is designed and used for estimating LW discharge coefficient (C d ) according to the existing experimental results. An improved multi-objective particle swarm optimization (MOPSO) algorithm named TOPSIS Fuzzy MOPSO (TFMOPSO) is proposed to solve the LW optimization problem. This algorithm utilizes the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to rank the solutions, while a fuzzy inference system is developed to select the algorithm strategy for finding two leaders among the non-dominated solutions. The performance of the proposed TFMOPSO has been tested on the optimization problem of the LW of the Ute dam. The results of TFMOPSO, along with three other state-of-the-art multi-objective algorithms, are explored in terms of hypervolume, coverage, and spacing metrics. It is demonstrated that the TFMOPSO outperforms other algorithms and studies for solving the LW multi-objective optimization problem for the case of Ute dam. Also, RBFNN is found to be one of the most appropriate approaches among studied algorithms in estimating the discharge coefficient of LW, while Pareto optimal solutions from TFMOPSO exhibit a significant improvement compared to the original design of Ute dam LW. |
doi_str_mv | 10.1109/ACCESS.2021.3057385 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_65ec197ce3994e36aac0ee31e06f2ed7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9348931</ieee_id><doaj_id>oai_doaj_org_article_65ec197ce3994e36aac0ee31e06f2ed7</doaj_id><sourcerecordid>2490800067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-33a180fa605a82b5210a5634c3d158b9a6571fa933931a7970abc9bb44799543</originalsourceid><addsrcrecordid>eNpNUU1r20AQFaGFhCS_IJeFnOXuarQr7dGYpDW4OCBDjstoNXLW2Fp3JafY0P_edeWEzmWG4b03Hy9JHgSfCMH1t-ls9lRVk4xnYgJcFlDKq-QmE0qnIEF9-a--Tu77fsNjlLEli5vkz7Rj890--Hdq2M_DdnDpst6QHdw7sRcMg7NbYtVvDDu23A9u5044ON-xVze8sdXypZpXDLuGPR9OpyNb-LWzrPXhA-y6NVsF3NPJuwa3bIH1Mbgucl_Jhbvka4vbnu4v-TZZPT-tZj_SxfL7fDZdpDbn5ZACoCh5i4pLLLNaZoKjVJBbaIQsa41KFqJFDaBBYKELjrXVdZ3nhdYyh9tkPso2HjdmH9wOw9F4dOZfw4e1uVxqlCQrdGEJtM4JFKLlRCCIqzajpohaj6NW_NmvA_WD2fhD6OL2Jss1L-Nv1RkFI8oG3_eB2s-pgpuza2Z0zZxdMxfXIuthZDki-mRoyMt4F_wFGl2TGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490800067</pqid></control><display><type>article</type><title>An Improved Multi-Objective Particle Swarm Optimization With TOPSIS and Fuzzy Logic for Optimizing Trapezoidal Labyrinth Weir</title><source>IEEE Xplore Open Access Journals</source><creator>Mahmoud, Ali ; Yuan, Xiaohui ; Kheimi, Marwan ; Almadani, Mohammad A. ; Hajilounezhad, Taher ; Yuan, Yanbin</creator><creatorcontrib>Mahmoud, Ali ; Yuan, Xiaohui ; Kheimi, Marwan ; Almadani, Mohammad A. ; Hajilounezhad, Taher ; Yuan, Yanbin</creatorcontrib><description>Labyrinth Weir (LW) is a popular control structure that passes a significantly higher flow rate compared to the linear weirs. In order to approach the optimal design of a trapezoidal LW, a multi-objective problem is defined to concurrently minimize the LW consumed concrete volume and maximize its discharge capacity. Simultaneously, a Radial Basis function Neural Networks (RBFNN) is designed and used for estimating LW discharge coefficient (C d ) according to the existing experimental results. An improved multi-objective particle swarm optimization (MOPSO) algorithm named TOPSIS Fuzzy MOPSO (TFMOPSO) is proposed to solve the LW optimization problem. This algorithm utilizes the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to rank the solutions, while a fuzzy inference system is developed to select the algorithm strategy for finding two leaders among the non-dominated solutions. The performance of the proposed TFMOPSO has been tested on the optimization problem of the LW of the Ute dam. The results of TFMOPSO, along with three other state-of-the-art multi-objective algorithms, are explored in terms of hypervolume, coverage, and spacing metrics. It is demonstrated that the TFMOPSO outperforms other algorithms and studies for solving the LW multi-objective optimization problem for the case of Ute dam. Also, RBFNN is found to be one of the most appropriate approaches among studied algorithms in estimating the discharge coefficient of LW, while Pareto optimal solutions from TFMOPSO exhibit a significant improvement compared to the original design of Ute dam LW.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3057385</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; cost reduction ; Dam engineering ; Dams ; Discharge coefficient ; Discharges (electric) ; Estimation ; Flow velocity ; Fuzzy logic ; Genetic algorithms ; Labyrinth Weir ; Mathematical model ; Multiple objective analysis ; Neural networks ; Optimization ; Pareto optimization ; Particle swarm optimization ; Radial basis function ; Shape ; shape optimization ; soft computing techniques ; swarm intelligence algorithms ; Weirs</subject><ispartof>IEEE access, 2021, Vol.9, p.25458-25472</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-33a180fa605a82b5210a5634c3d158b9a6571fa933931a7970abc9bb44799543</citedby><cites>FETCH-LOGICAL-c408t-33a180fa605a82b5210a5634c3d158b9a6571fa933931a7970abc9bb44799543</cites><orcidid>0000-0002-9843-2906 ; 0000-0003-3962-9837 ; 0000-0002-0939-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9348931$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Mahmoud, Ali</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Kheimi, Marwan</creatorcontrib><creatorcontrib>Almadani, Mohammad A.</creatorcontrib><creatorcontrib>Hajilounezhad, Taher</creatorcontrib><creatorcontrib>Yuan, Yanbin</creatorcontrib><title>An Improved Multi-Objective Particle Swarm Optimization With TOPSIS and Fuzzy Logic for Optimizing Trapezoidal Labyrinth Weir</title><title>IEEE access</title><addtitle>Access</addtitle><description>Labyrinth Weir (LW) is a popular control structure that passes a significantly higher flow rate compared to the linear weirs. In order to approach the optimal design of a trapezoidal LW, a multi-objective problem is defined to concurrently minimize the LW consumed concrete volume and maximize its discharge capacity. Simultaneously, a Radial Basis function Neural Networks (RBFNN) is designed and used for estimating LW discharge coefficient (C d ) according to the existing experimental results. An improved multi-objective particle swarm optimization (MOPSO) algorithm named TOPSIS Fuzzy MOPSO (TFMOPSO) is proposed to solve the LW optimization problem. This algorithm utilizes the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to rank the solutions, while a fuzzy inference system is developed to select the algorithm strategy for finding two leaders among the non-dominated solutions. The performance of the proposed TFMOPSO has been tested on the optimization problem of the LW of the Ute dam. The results of TFMOPSO, along with three other state-of-the-art multi-objective algorithms, are explored in terms of hypervolume, coverage, and spacing metrics. It is demonstrated that the TFMOPSO outperforms other algorithms and studies for solving the LW multi-objective optimization problem for the case of Ute dam. Also, RBFNN is found to be one of the most appropriate approaches among studied algorithms in estimating the discharge coefficient of LW, while Pareto optimal solutions from TFMOPSO exhibit a significant improvement compared to the original design of Ute dam LW.</description><subject>Algorithms</subject><subject>cost reduction</subject><subject>Dam engineering</subject><subject>Dams</subject><subject>Discharge coefficient</subject><subject>Discharges (electric)</subject><subject>Estimation</subject><subject>Flow velocity</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Labyrinth Weir</subject><subject>Mathematical model</subject><subject>Multiple objective analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Particle swarm optimization</subject><subject>Radial basis function</subject><subject>Shape</subject><subject>shape optimization</subject><subject>soft computing techniques</subject><subject>swarm intelligence algorithms</subject><subject>Weirs</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r20AQFaGFhCS_IJeFnOXuarQr7dGYpDW4OCBDjstoNXLW2Fp3JafY0P_edeWEzmWG4b03Hy9JHgSfCMH1t-ls9lRVk4xnYgJcFlDKq-QmE0qnIEF9-a--Tu77fsNjlLEli5vkz7Rj890--Hdq2M_DdnDpst6QHdw7sRcMg7NbYtVvDDu23A9u5044ON-xVze8sdXypZpXDLuGPR9OpyNb-LWzrPXhA-y6NVsF3NPJuwa3bIH1Mbgucl_Jhbvka4vbnu4v-TZZPT-tZj_SxfL7fDZdpDbn5ZACoCh5i4pLLLNaZoKjVJBbaIQsa41KFqJFDaBBYKELjrXVdZ3nhdYyh9tkPso2HjdmH9wOw9F4dOZfw4e1uVxqlCQrdGEJtM4JFKLlRCCIqzajpohaj6NW_NmvA_WD2fhD6OL2Jss1L-Nv1RkFI8oG3_eB2s-pgpuza2Z0zZxdMxfXIuthZDki-mRoyMt4F_wFGl2TGA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mahmoud, Ali</creator><creator>Yuan, Xiaohui</creator><creator>Kheimi, Marwan</creator><creator>Almadani, Mohammad A.</creator><creator>Hajilounezhad, Taher</creator><creator>Yuan, Yanbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9843-2906</orcidid><orcidid>https://orcid.org/0000-0003-3962-9837</orcidid><orcidid>https://orcid.org/0000-0002-0939-2704</orcidid></search><sort><creationdate>2021</creationdate><title>An Improved Multi-Objective Particle Swarm Optimization With TOPSIS and Fuzzy Logic for Optimizing Trapezoidal Labyrinth Weir</title><author>Mahmoud, Ali ; Yuan, Xiaohui ; Kheimi, Marwan ; Almadani, Mohammad A. ; Hajilounezhad, Taher ; Yuan, Yanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-33a180fa605a82b5210a5634c3d158b9a6571fa933931a7970abc9bb44799543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>cost reduction</topic><topic>Dam engineering</topic><topic>Dams</topic><topic>Discharge coefficient</topic><topic>Discharges (electric)</topic><topic>Estimation</topic><topic>Flow velocity</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Labyrinth Weir</topic><topic>Mathematical model</topic><topic>Multiple objective analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Particle swarm optimization</topic><topic>Radial basis function</topic><topic>Shape</topic><topic>shape optimization</topic><topic>soft computing techniques</topic><topic>swarm intelligence algorithms</topic><topic>Weirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmoud, Ali</creatorcontrib><creatorcontrib>Yuan, Xiaohui</creatorcontrib><creatorcontrib>Kheimi, Marwan</creatorcontrib><creatorcontrib>Almadani, Mohammad A.</creatorcontrib><creatorcontrib>Hajilounezhad, Taher</creatorcontrib><creatorcontrib>Yuan, Yanbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoud, Ali</au><au>Yuan, Xiaohui</au><au>Kheimi, Marwan</au><au>Almadani, Mohammad A.</au><au>Hajilounezhad, Taher</au><au>Yuan, Yanbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Multi-Objective Particle Swarm Optimization With TOPSIS and Fuzzy Logic for Optimizing Trapezoidal Labyrinth Weir</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>25458</spage><epage>25472</epage><pages>25458-25472</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Labyrinth Weir (LW) is a popular control structure that passes a significantly higher flow rate compared to the linear weirs. In order to approach the optimal design of a trapezoidal LW, a multi-objective problem is defined to concurrently minimize the LW consumed concrete volume and maximize its discharge capacity. Simultaneously, a Radial Basis function Neural Networks (RBFNN) is designed and used for estimating LW discharge coefficient (C d ) according to the existing experimental results. An improved multi-objective particle swarm optimization (MOPSO) algorithm named TOPSIS Fuzzy MOPSO (TFMOPSO) is proposed to solve the LW optimization problem. This algorithm utilizes the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to rank the solutions, while a fuzzy inference system is developed to select the algorithm strategy for finding two leaders among the non-dominated solutions. The performance of the proposed TFMOPSO has been tested on the optimization problem of the LW of the Ute dam. The results of TFMOPSO, along with three other state-of-the-art multi-objective algorithms, are explored in terms of hypervolume, coverage, and spacing metrics. It is demonstrated that the TFMOPSO outperforms other algorithms and studies for solving the LW multi-objective optimization problem for the case of Ute dam. Also, RBFNN is found to be one of the most appropriate approaches among studied algorithms in estimating the discharge coefficient of LW, while Pareto optimal solutions from TFMOPSO exhibit a significant improvement compared to the original design of Ute dam LW.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3057385</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9843-2906</orcidid><orcidid>https://orcid.org/0000-0003-3962-9837</orcidid><orcidid>https://orcid.org/0000-0002-0939-2704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.25458-25472 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_65ec197ce3994e36aac0ee31e06f2ed7 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms cost reduction Dam engineering Dams Discharge coefficient Discharges (electric) Estimation Flow velocity Fuzzy logic Genetic algorithms Labyrinth Weir Mathematical model Multiple objective analysis Neural networks Optimization Pareto optimization Particle swarm optimization Radial basis function Shape shape optimization soft computing techniques swarm intelligence algorithms Weirs |
title | An Improved Multi-Objective Particle Swarm Optimization With TOPSIS and Fuzzy Logic for Optimizing Trapezoidal Labyrinth Weir |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Multi-Objective%20Particle%20Swarm%20Optimization%20With%20TOPSIS%20and%20Fuzzy%20Logic%20for%20Optimizing%20Trapezoidal%20Labyrinth%20Weir&rft.jtitle=IEEE%20access&rft.au=Mahmoud,%20Ali&rft.date=2021&rft.volume=9&rft.spage=25458&rft.epage=25472&rft.pages=25458-25472&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3057385&rft_dat=%3Cproquest_doaj_%3E2490800067%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-33a180fa605a82b5210a5634c3d158b9a6571fa933931a7970abc9bb44799543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490800067&rft_id=info:pmid/&rft_ieee_id=9348931&rfr_iscdi=true |