Loading…

Access to an ELM-suppressed X-point radiator regime in TCV snowflake minus configurations

•TCV’s operating regime with an X-point radiator is broadened by means of magnetic geometry.•Particular snowflake-minus configurations facilitate the access to the X-point radiator regime and increase its stability•TCV experiments demonstrate a stable X-point radiator with carbon as the main radiati...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear materials and energy 2024-12, Vol.41, p.101784, Article 101784
Main Authors: Reimerdes, H., Theiler, C., Bernert, M., Duval, B.P., Février, O., Gorno, S., Hamm, D., Lee, K., Pan, O., Perek, A., Simons, L., Sun, G., Thornton, A., Verhaegh, K., Wang, Y., Wüthrich, C., Zurita, M.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-eec03600cb1f32dc7da2a8ff402972925eca9ef8a59fedfca036d906606ef0e03
container_end_page
container_issue
container_start_page 101784
container_title Nuclear materials and energy
container_volume 41
creator Reimerdes, H.
Theiler, C.
Bernert, M.
Duval, B.P.
Février, O.
Gorno, S.
Hamm, D.
Lee, K.
Pan, O.
Perek, A.
Simons, L.
Sun, G.
Thornton, A.
Verhaegh, K.
Wang, Y.
Wüthrich, C.
Zurita, M.
description •TCV’s operating regime with an X-point radiator is broadened by means of magnetic geometry.•Particular snowflake-minus configurations facilitate the access to the X-point radiator regime and increase its stability•TCV experiments demonstrate a stable X-point radiator with carbon as the main radiating species.•The X-point radiator regime can coincide with the disappearance of edge localized modes TCV’s operating regime with an X-point radiator (XPR) has been broadened by changing the magnetic geometry. XPRs have properties that could make them an attractive power exhaust solution for fusion reactors. These include the conversion of a high fraction of exhaust power into radiation. TCV had previously accessed the XPR regime only with difficulties, as predicted for plasmas where radiative losses are dominated by carbon impurities, that are ubiquitous in TCV. Guided by this theoretical model of the XPR, recent experiments employed TCV’s configurational versatility to demonstrate that XPR access can be facilitated by introducing a second X-point in the vicinity of the separatrix. This configuration, which has a snowflake-minus topology, features a particularly long magnetic connection length from the region just above the X-point to the outer midplane together with a wide geometrical interface with the private flux region that reaches high neutral pressures. Transitioning to this configuration in a high-power H-mode leads to a shift in the radiating region across the separatrix from the divertor to a volume above the X-point, i.e. within the last closed flux surface (LCFS). This displacement of the radiating region is co-incident with the disappearance of edge localised modes (ELMs), while retaining H-mode confinement, a behaviour only, to date, observed in devices with metallic walls. In contrast to observations in these other devices, on TCV, the primary strike points in these configurations remain attached. Detailed measurements of the plasma kinetic parameters inside and outside of the separatrix now challenge the models for access and stability of the XPR and ELMs alike.
doi_str_mv 10.1016/j.nme.2024.101784
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_660f46405ed1443c8b2aa2a79dafd7da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352179124002072</els_id><doaj_id>oai_doaj_org_article_660f46405ed1443c8b2aa2a79dafd7da</doaj_id><sourcerecordid>S2352179124002072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-eec03600cb1f32dc7da2a8ff402972925eca9ef8a59fedfca036d906606ef0e03</originalsourceid><addsrcrecordid>eNp9UE1LAzEQXUTBov0B3vIHtibZ7BeeSqlaqHipoqcwTSYltZuUZKv4701dEU-eZuYx772Zl2VXjE4YZdX1duI6nHDKxXGuG3GSjXhR8pzVLTv9059n4xi3lFLW8oaLYpS9TpXCGEnvCTgyXz7k8bDfhwShJi_53lvXkwDaQu8DCbixHRLryGr2TKLzH2YHb0g66w6RKO-M3RwC9Na7eJmdGdhFHP_Ui-zpdr6a3efLx7vFbLrMFRdlnyMqWlSUqjUzBdeq1sChMUZQ3ta85SUqaNE0ULYGtVGQtnVLq4pWaCjS4iJbDLraw1bug-0gfEoPVn4DPmwkhN6qHcpEMqIStETNhChUs-aQ3OpWg9HJOGmxQUsFH2NA86vHqDxGLbcyRS2PUcsh6sS5GTiYnny3GGRUFp1CbQOqPl1h_2F_ARwZh3M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Access to an ELM-suppressed X-point radiator regime in TCV snowflake minus configurations</title><source>ScienceDirect Journals</source><creator>Reimerdes, H. ; Theiler, C. ; Bernert, M. ; Duval, B.P. ; Février, O. ; Gorno, S. ; Hamm, D. ; Lee, K. ; Pan, O. ; Perek, A. ; Simons, L. ; Sun, G. ; Thornton, A. ; Verhaegh, K. ; Wang, Y. ; Wüthrich, C. ; Zurita, M.</creator><creatorcontrib>Reimerdes, H. ; Theiler, C. ; Bernert, M. ; Duval, B.P. ; Février, O. ; Gorno, S. ; Hamm, D. ; Lee, K. ; Pan, O. ; Perek, A. ; Simons, L. ; Sun, G. ; Thornton, A. ; Verhaegh, K. ; Wang, Y. ; Wüthrich, C. ; Zurita, M. ; the EUROfusion tokamak exploitation team ; the TCV team</creatorcontrib><description>•TCV’s operating regime with an X-point radiator is broadened by means of magnetic geometry.•Particular snowflake-minus configurations facilitate the access to the X-point radiator regime and increase its stability•TCV experiments demonstrate a stable X-point radiator with carbon as the main radiating species.•The X-point radiator regime can coincide with the disappearance of edge localized modes TCV’s operating regime with an X-point radiator (XPR) has been broadened by changing the magnetic geometry. XPRs have properties that could make them an attractive power exhaust solution for fusion reactors. These include the conversion of a high fraction of exhaust power into radiation. TCV had previously accessed the XPR regime only with difficulties, as predicted for plasmas where radiative losses are dominated by carbon impurities, that are ubiquitous in TCV. Guided by this theoretical model of the XPR, recent experiments employed TCV’s configurational versatility to demonstrate that XPR access can be facilitated by introducing a second X-point in the vicinity of the separatrix. This configuration, which has a snowflake-minus topology, features a particularly long magnetic connection length from the region just above the X-point to the outer midplane together with a wide geometrical interface with the private flux region that reaches high neutral pressures. Transitioning to this configuration in a high-power H-mode leads to a shift in the radiating region across the separatrix from the divertor to a volume above the X-point, i.e. within the last closed flux surface (LCFS). This displacement of the radiating region is co-incident with the disappearance of edge localised modes (ELMs), while retaining H-mode confinement, a behaviour only, to date, observed in devices with metallic walls. In contrast to observations in these other devices, on TCV, the primary strike points in these configurations remain attached. Detailed measurements of the plasma kinetic parameters inside and outside of the separatrix now challenge the models for access and stability of the XPR and ELMs alike.</description><identifier>ISSN: 2352-1791</identifier><identifier>EISSN: 2352-1791</identifier><identifier>DOI: 10.1016/j.nme.2024.101784</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Nuclear materials and energy, 2024-12, Vol.41, p.101784, Article 101784</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-eec03600cb1f32dc7da2a8ff402972925eca9ef8a59fedfca036d906606ef0e03</cites><orcidid>0000-0003-0524-7283 ; 0000-0002-9726-1519 ; 0009-0004-5888-2277 ; 0000-0003-3926-1374 ; 0000-0003-3827-0674 ; 0000-0001-6761-6019 ; 0000-0002-4117-0298 ; 0000-0002-5838-5076 ; 0000-0003-1131-0867 ; 0000-0002-9290-7413 ; 0000-0002-5608-3015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352179124002072$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3547,27923,27924,45779</link.rule.ids></links><search><creatorcontrib>Reimerdes, H.</creatorcontrib><creatorcontrib>Theiler, C.</creatorcontrib><creatorcontrib>Bernert, M.</creatorcontrib><creatorcontrib>Duval, B.P.</creatorcontrib><creatorcontrib>Février, O.</creatorcontrib><creatorcontrib>Gorno, S.</creatorcontrib><creatorcontrib>Hamm, D.</creatorcontrib><creatorcontrib>Lee, K.</creatorcontrib><creatorcontrib>Pan, O.</creatorcontrib><creatorcontrib>Perek, A.</creatorcontrib><creatorcontrib>Simons, L.</creatorcontrib><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Thornton, A.</creatorcontrib><creatorcontrib>Verhaegh, K.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Wüthrich, C.</creatorcontrib><creatorcontrib>Zurita, M.</creatorcontrib><creatorcontrib>the EUROfusion tokamak exploitation team</creatorcontrib><creatorcontrib>the TCV team</creatorcontrib><title>Access to an ELM-suppressed X-point radiator regime in TCV snowflake minus configurations</title><title>Nuclear materials and energy</title><description>•TCV’s operating regime with an X-point radiator is broadened by means of magnetic geometry.•Particular snowflake-minus configurations facilitate the access to the X-point radiator regime and increase its stability•TCV experiments demonstrate a stable X-point radiator with carbon as the main radiating species.•The X-point radiator regime can coincide with the disappearance of edge localized modes TCV’s operating regime with an X-point radiator (XPR) has been broadened by changing the magnetic geometry. XPRs have properties that could make them an attractive power exhaust solution for fusion reactors. These include the conversion of a high fraction of exhaust power into radiation. TCV had previously accessed the XPR regime only with difficulties, as predicted for plasmas where radiative losses are dominated by carbon impurities, that are ubiquitous in TCV. Guided by this theoretical model of the XPR, recent experiments employed TCV’s configurational versatility to demonstrate that XPR access can be facilitated by introducing a second X-point in the vicinity of the separatrix. This configuration, which has a snowflake-minus topology, features a particularly long magnetic connection length from the region just above the X-point to the outer midplane together with a wide geometrical interface with the private flux region that reaches high neutral pressures. Transitioning to this configuration in a high-power H-mode leads to a shift in the radiating region across the separatrix from the divertor to a volume above the X-point, i.e. within the last closed flux surface (LCFS). This displacement of the radiating region is co-incident with the disappearance of edge localised modes (ELMs), while retaining H-mode confinement, a behaviour only, to date, observed in devices with metallic walls. In contrast to observations in these other devices, on TCV, the primary strike points in these configurations remain attached. Detailed measurements of the plasma kinetic parameters inside and outside of the separatrix now challenge the models for access and stability of the XPR and ELMs alike.</description><issn>2352-1791</issn><issn>2352-1791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UE1LAzEQXUTBov0B3vIHtibZ7BeeSqlaqHipoqcwTSYltZuUZKv4701dEU-eZuYx772Zl2VXjE4YZdX1duI6nHDKxXGuG3GSjXhR8pzVLTv9059n4xi3lFLW8oaLYpS9TpXCGEnvCTgyXz7k8bDfhwShJi_53lvXkwDaQu8DCbixHRLryGr2TKLzH2YHb0g66w6RKO-M3RwC9Na7eJmdGdhFHP_Ui-zpdr6a3efLx7vFbLrMFRdlnyMqWlSUqjUzBdeq1sChMUZQ3ta85SUqaNE0ULYGtVGQtnVLq4pWaCjS4iJbDLraw1bug-0gfEoPVn4DPmwkhN6qHcpEMqIStETNhChUs-aQ3OpWg9HJOGmxQUsFH2NA86vHqDxGLbcyRS2PUcsh6sS5GTiYnny3GGRUFp1CbQOqPl1h_2F_ARwZh3M</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Reimerdes, H.</creator><creator>Theiler, C.</creator><creator>Bernert, M.</creator><creator>Duval, B.P.</creator><creator>Février, O.</creator><creator>Gorno, S.</creator><creator>Hamm, D.</creator><creator>Lee, K.</creator><creator>Pan, O.</creator><creator>Perek, A.</creator><creator>Simons, L.</creator><creator>Sun, G.</creator><creator>Thornton, A.</creator><creator>Verhaegh, K.</creator><creator>Wang, Y.</creator><creator>Wüthrich, C.</creator><creator>Zurita, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0524-7283</orcidid><orcidid>https://orcid.org/0000-0002-9726-1519</orcidid><orcidid>https://orcid.org/0009-0004-5888-2277</orcidid><orcidid>https://orcid.org/0000-0003-3926-1374</orcidid><orcidid>https://orcid.org/0000-0003-3827-0674</orcidid><orcidid>https://orcid.org/0000-0001-6761-6019</orcidid><orcidid>https://orcid.org/0000-0002-4117-0298</orcidid><orcidid>https://orcid.org/0000-0002-5838-5076</orcidid><orcidid>https://orcid.org/0000-0003-1131-0867</orcidid><orcidid>https://orcid.org/0000-0002-9290-7413</orcidid><orcidid>https://orcid.org/0000-0002-5608-3015</orcidid></search><sort><creationdate>202412</creationdate><title>Access to an ELM-suppressed X-point radiator regime in TCV snowflake minus configurations</title><author>Reimerdes, H. ; Theiler, C. ; Bernert, M. ; Duval, B.P. ; Février, O. ; Gorno, S. ; Hamm, D. ; Lee, K. ; Pan, O. ; Perek, A. ; Simons, L. ; Sun, G. ; Thornton, A. ; Verhaegh, K. ; Wang, Y. ; Wüthrich, C. ; Zurita, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-eec03600cb1f32dc7da2a8ff402972925eca9ef8a59fedfca036d906606ef0e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reimerdes, H.</creatorcontrib><creatorcontrib>Theiler, C.</creatorcontrib><creatorcontrib>Bernert, M.</creatorcontrib><creatorcontrib>Duval, B.P.</creatorcontrib><creatorcontrib>Février, O.</creatorcontrib><creatorcontrib>Gorno, S.</creatorcontrib><creatorcontrib>Hamm, D.</creatorcontrib><creatorcontrib>Lee, K.</creatorcontrib><creatorcontrib>Pan, O.</creatorcontrib><creatorcontrib>Perek, A.</creatorcontrib><creatorcontrib>Simons, L.</creatorcontrib><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Thornton, A.</creatorcontrib><creatorcontrib>Verhaegh, K.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Wüthrich, C.</creatorcontrib><creatorcontrib>Zurita, M.</creatorcontrib><creatorcontrib>the EUROfusion tokamak exploitation team</creatorcontrib><creatorcontrib>the TCV team</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear materials and energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reimerdes, H.</au><au>Theiler, C.</au><au>Bernert, M.</au><au>Duval, B.P.</au><au>Février, O.</au><au>Gorno, S.</au><au>Hamm, D.</au><au>Lee, K.</au><au>Pan, O.</au><au>Perek, A.</au><au>Simons, L.</au><au>Sun, G.</au><au>Thornton, A.</au><au>Verhaegh, K.</au><au>Wang, Y.</au><au>Wüthrich, C.</au><au>Zurita, M.</au><aucorp>the EUROfusion tokamak exploitation team</aucorp><aucorp>the TCV team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Access to an ELM-suppressed X-point radiator regime in TCV snowflake minus configurations</atitle><jtitle>Nuclear materials and energy</jtitle><date>2024-12</date><risdate>2024</risdate><volume>41</volume><spage>101784</spage><pages>101784-</pages><artnum>101784</artnum><issn>2352-1791</issn><eissn>2352-1791</eissn><abstract>•TCV’s operating regime with an X-point radiator is broadened by means of magnetic geometry.•Particular snowflake-minus configurations facilitate the access to the X-point radiator regime and increase its stability•TCV experiments demonstrate a stable X-point radiator with carbon as the main radiating species.•The X-point radiator regime can coincide with the disappearance of edge localized modes TCV’s operating regime with an X-point radiator (XPR) has been broadened by changing the magnetic geometry. XPRs have properties that could make them an attractive power exhaust solution for fusion reactors. These include the conversion of a high fraction of exhaust power into radiation. TCV had previously accessed the XPR regime only with difficulties, as predicted for plasmas where radiative losses are dominated by carbon impurities, that are ubiquitous in TCV. Guided by this theoretical model of the XPR, recent experiments employed TCV’s configurational versatility to demonstrate that XPR access can be facilitated by introducing a second X-point in the vicinity of the separatrix. This configuration, which has a snowflake-minus topology, features a particularly long magnetic connection length from the region just above the X-point to the outer midplane together with a wide geometrical interface with the private flux region that reaches high neutral pressures. Transitioning to this configuration in a high-power H-mode leads to a shift in the radiating region across the separatrix from the divertor to a volume above the X-point, i.e. within the last closed flux surface (LCFS). This displacement of the radiating region is co-incident with the disappearance of edge localised modes (ELMs), while retaining H-mode confinement, a behaviour only, to date, observed in devices with metallic walls. In contrast to observations in these other devices, on TCV, the primary strike points in these configurations remain attached. Detailed measurements of the plasma kinetic parameters inside and outside of the separatrix now challenge the models for access and stability of the XPR and ELMs alike.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nme.2024.101784</doi><orcidid>https://orcid.org/0000-0003-0524-7283</orcidid><orcidid>https://orcid.org/0000-0002-9726-1519</orcidid><orcidid>https://orcid.org/0009-0004-5888-2277</orcidid><orcidid>https://orcid.org/0000-0003-3926-1374</orcidid><orcidid>https://orcid.org/0000-0003-3827-0674</orcidid><orcidid>https://orcid.org/0000-0001-6761-6019</orcidid><orcidid>https://orcid.org/0000-0002-4117-0298</orcidid><orcidid>https://orcid.org/0000-0002-5838-5076</orcidid><orcidid>https://orcid.org/0000-0003-1131-0867</orcidid><orcidid>https://orcid.org/0000-0002-9290-7413</orcidid><orcidid>https://orcid.org/0000-0002-5608-3015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-1791
ispartof Nuclear materials and energy, 2024-12, Vol.41, p.101784, Article 101784
issn 2352-1791
2352-1791
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_660f46405ed1443c8b2aa2a79dafd7da
source ScienceDirect Journals
title Access to an ELM-suppressed X-point radiator regime in TCV snowflake minus configurations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Access%20to%20an%20ELM-suppressed%20X-point%20radiator%20regime%20in%20TCV%20snowflake%20minus%20configurations&rft.jtitle=Nuclear%20materials%20and%20energy&rft.au=Reimerdes,%20H.&rft.aucorp=the%20EUROfusion%20tokamak%20exploitation%20team&rft.date=2024-12&rft.volume=41&rft.spage=101784&rft.pages=101784-&rft.artnum=101784&rft.issn=2352-1791&rft.eissn=2352-1791&rft_id=info:doi/10.1016/j.nme.2024.101784&rft_dat=%3Celsevier_doaj_%3ES2352179124002072%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-eec03600cb1f32dc7da2a8ff402972925eca9ef8a59fedfca036d906606ef0e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true