Loading…
Gridded livestock density database and spatial trends for Kazakhstan
Livestock rearing is a major source of livelihood for food and income in dryland Asia. Increasing livestock density (LSK D ) affects ecosystem structure and function, amplifies the effects of climate change, and facilitates disease transmission. Significant knowledge and data gaps regarding their de...
Saved in:
Published in: | Scientific data 2023-11, Vol.10 (1), p.1-15, Article 839 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c563t-c3ff775b1765151d6cc1e467042d9732efa8a8737c6acbbb08e3d1e7e3e12ab63 |
---|---|
cites | cdi_FETCH-LOGICAL-c563t-c3ff775b1765151d6cc1e467042d9732efa8a8737c6acbbb08e3d1e7e3e12ab63 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 1 |
container_title | Scientific data |
container_volume | 10 |
creator | Kolluru, Venkatesh John, Ranjeet Saraf, Sakshi Chen, Jiquan Hankerson, Brett Robinson, Sarah Kussainova, Maira Jain, Khushboo |
description | Livestock rearing is a major source of livelihood for food and income in dryland Asia. Increasing livestock density (LSK D ) affects ecosystem structure and function, amplifies the effects of climate change, and facilitates disease transmission. Significant knowledge and data gaps regarding their density, spatial distribution, and changes over time exist but have not been explored beyond the county level. This is especially true regarding the unavailability of high-resolution gridded livestock data. Hence, we developed a gridded LSK D database of horses and small ruminants (i.e., sheep & goats) at high-resolution (1 km) for Kazakhstan (KZ) from 2000–2019 using vegetation proxies, climatic, socioeconomic, topographic, and proximity forcing variables through a random forest (RF) regression modeling. We found high-density livestock hotspots in the south-central and southeastern regions, whereas medium-density clusters in the northern and northwestern regions of KZ. Interestingly, population density, proximity to settlements, nighttime lights, and temperature contributed to the efficient downscaling of district-level censuses to gridded estimates. This database will benefit stakeholders, the research community, land managers, and policymakers at regional and national levels. |
doi_str_mv | 10.1038/s41597-023-02736-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6630cf3192ce4f6e95e309fa66bc89c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6630cf3192ce4f6e95e309fa66bc89c1</doaj_id><sourcerecordid>2895710734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-c3ff775b1765151d6cc1e467042d9732efa8a8737c6acbbb08e3d1e7e3e12ab63</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhi0EotXSF0ACReLCJTC2Yzs5IdRCqajEBc7WxJ5svc3Gxc5WKk-Puyml5cDBGsvzze_x_GbsJYd3HGT7PjdcdaYGIcsyUtfqCTsUoETdNFo-fbA_YEc5bwCAywaUgefsQLYgwQAcspPTFLwnX43hmvIc3WXlacphvqk8zthjpgonX-UrnAOO1Zxo8rkaYqq-4i-8vMgzTi_YswHHTEd3ccV-fP70_fhLff7t9Oz443ntlJZz7eQwGKN6brTiinvtHKdGG2iE74wUNGCLrZHGaXR930NL0nMyJIkL7LVcsbNF10fc2KsUtphubMRg9wcxrS2mObiRrNYS3CB5Jxw1g6ZOkYRuQK1713aOF60Pi9bVrt-SdzTNCcdHoo8zU7iw63htOejWQOl3xd7eKaT4c1eGZ7chOxpHnCjushVtpwwHI5uCvvkH3cRdmsqs9hQYUfwolFgol2LOiYb7bjjYW9PtYrotptu96VaVotcP33Ff8sfiAsgFyCU1rSn9vfu_sq-WKnJxCtnehvI9UukXhGjlb2xPwQM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895072030</pqid></control><display><type>article</type><title>Gridded livestock density database and spatial trends for Kazakhstan</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kolluru, Venkatesh ; John, Ranjeet ; Saraf, Sakshi ; Chen, Jiquan ; Hankerson, Brett ; Robinson, Sarah ; Kussainova, Maira ; Jain, Khushboo</creator><creatorcontrib>Kolluru, Venkatesh ; John, Ranjeet ; Saraf, Sakshi ; Chen, Jiquan ; Hankerson, Brett ; Robinson, Sarah ; Kussainova, Maira ; Jain, Khushboo</creatorcontrib><description>Livestock rearing is a major source of livelihood for food and income in dryland Asia. Increasing livestock density (LSK D ) affects ecosystem structure and function, amplifies the effects of climate change, and facilitates disease transmission. Significant knowledge and data gaps regarding their density, spatial distribution, and changes over time exist but have not been explored beyond the county level. This is especially true regarding the unavailability of high-resolution gridded livestock data. Hence, we developed a gridded LSK D database of horses and small ruminants (i.e., sheep & goats) at high-resolution (1 km) for Kazakhstan (KZ) from 2000–2019 using vegetation proxies, climatic, socioeconomic, topographic, and proximity forcing variables through a random forest (RF) regression modeling. We found high-density livestock hotspots in the south-central and southeastern regions, whereas medium-density clusters in the northern and northwestern regions of KZ. Interestingly, population density, proximity to settlements, nighttime lights, and temperature contributed to the efficient downscaling of district-level censuses to gridded estimates. This database will benefit stakeholders, the research community, land managers, and policymakers at regional and national levels.</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-023-02736-5</identifier><identifier>PMID: 38030700</identifier><language>eng</language><publisher>Berlin: Springer Nature</publisher><subject>704/158/1144 ; 704/158/1745 ; 704/158/2453 ; Animals ; Climate change ; Data Descriptor ; Disease transmission ; Ecosystem ; Ecosystem structure ; Goats ; Horses ; Humanities and Social Sciences ; Kazakhstan ; Livestock ; multidisciplinary ; Population density ; Science ; Science (multidisciplinary) ; Sheep ; Spatial distribution ; Structure-function relationships</subject><ispartof>Scientific data, 2023-11, Vol.10 (1), p.1-15, Article 839</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-c3ff775b1765151d6cc1e467042d9732efa8a8737c6acbbb08e3d1e7e3e12ab63</citedby><cites>FETCH-LOGICAL-c563t-c3ff775b1765151d6cc1e467042d9732efa8a8737c6acbbb08e3d1e7e3e12ab63</cites><orcidid>0000-0002-2110-5560 ; 0000-0003-0761-9458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2895072030/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2895072030?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38030700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolluru, Venkatesh</creatorcontrib><creatorcontrib>John, Ranjeet</creatorcontrib><creatorcontrib>Saraf, Sakshi</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Hankerson, Brett</creatorcontrib><creatorcontrib>Robinson, Sarah</creatorcontrib><creatorcontrib>Kussainova, Maira</creatorcontrib><creatorcontrib>Jain, Khushboo</creatorcontrib><title>Gridded livestock density database and spatial trends for Kazakhstan</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Livestock rearing is a major source of livelihood for food and income in dryland Asia. Increasing livestock density (LSK D ) affects ecosystem structure and function, amplifies the effects of climate change, and facilitates disease transmission. Significant knowledge and data gaps regarding their density, spatial distribution, and changes over time exist but have not been explored beyond the county level. This is especially true regarding the unavailability of high-resolution gridded livestock data. Hence, we developed a gridded LSK D database of horses and small ruminants (i.e., sheep & goats) at high-resolution (1 km) for Kazakhstan (KZ) from 2000–2019 using vegetation proxies, climatic, socioeconomic, topographic, and proximity forcing variables through a random forest (RF) regression modeling. We found high-density livestock hotspots in the south-central and southeastern regions, whereas medium-density clusters in the northern and northwestern regions of KZ. Interestingly, population density, proximity to settlements, nighttime lights, and temperature contributed to the efficient downscaling of district-level censuses to gridded estimates. This database will benefit stakeholders, the research community, land managers, and policymakers at regional and national levels.</description><subject>704/158/1144</subject><subject>704/158/1745</subject><subject>704/158/2453</subject><subject>Animals</subject><subject>Climate change</subject><subject>Data Descriptor</subject><subject>Disease transmission</subject><subject>Ecosystem</subject><subject>Ecosystem structure</subject><subject>Goats</subject><subject>Horses</subject><subject>Humanities and Social Sciences</subject><subject>Kazakhstan</subject><subject>Livestock</subject><subject>multidisciplinary</subject><subject>Population density</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sheep</subject><subject>Spatial distribution</subject><subject>Structure-function relationships</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu1DAQhi0EotXSF0ACReLCJTC2Yzs5IdRCqajEBc7WxJ5svc3Gxc5WKk-Puyml5cDBGsvzze_x_GbsJYd3HGT7PjdcdaYGIcsyUtfqCTsUoETdNFo-fbA_YEc5bwCAywaUgefsQLYgwQAcspPTFLwnX43hmvIc3WXlacphvqk8zthjpgonX-UrnAOO1Zxo8rkaYqq-4i-8vMgzTi_YswHHTEd3ccV-fP70_fhLff7t9Oz443ntlJZz7eQwGKN6brTiinvtHKdGG2iE74wUNGCLrZHGaXR930NL0nMyJIkL7LVcsbNF10fc2KsUtphubMRg9wcxrS2mObiRrNYS3CB5Jxw1g6ZOkYRuQK1713aOF60Pi9bVrt-SdzTNCcdHoo8zU7iw63htOejWQOl3xd7eKaT4c1eGZ7chOxpHnCjushVtpwwHI5uCvvkH3cRdmsqs9hQYUfwolFgol2LOiYb7bjjYW9PtYrotptu96VaVotcP33Ff8sfiAsgFyCU1rSn9vfu_sq-WKnJxCtnehvI9UukXhGjlb2xPwQM</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Kolluru, Venkatesh</creator><creator>John, Ranjeet</creator><creator>Saraf, Sakshi</creator><creator>Chen, Jiquan</creator><creator>Hankerson, Brett</creator><creator>Robinson, Sarah</creator><creator>Kussainova, Maira</creator><creator>Jain, Khushboo</creator><general>Springer Nature</general><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>OT2</scope><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2110-5560</orcidid><orcidid>https://orcid.org/0000-0003-0761-9458</orcidid></search><sort><creationdate>20231129</creationdate><title>Gridded livestock density database and spatial trends for Kazakhstan</title><author>Kolluru, Venkatesh ; John, Ranjeet ; Saraf, Sakshi ; Chen, Jiquan ; Hankerson, Brett ; Robinson, Sarah ; Kussainova, Maira ; Jain, Khushboo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-c3ff775b1765151d6cc1e467042d9732efa8a8737c6acbbb08e3d1e7e3e12ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>704/158/1144</topic><topic>704/158/1745</topic><topic>704/158/2453</topic><topic>Animals</topic><topic>Climate change</topic><topic>Data Descriptor</topic><topic>Disease transmission</topic><topic>Ecosystem</topic><topic>Ecosystem structure</topic><topic>Goats</topic><topic>Horses</topic><topic>Humanities and Social Sciences</topic><topic>Kazakhstan</topic><topic>Livestock</topic><topic>multidisciplinary</topic><topic>Population density</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sheep</topic><topic>Spatial distribution</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolluru, Venkatesh</creatorcontrib><creatorcontrib>John, Ranjeet</creatorcontrib><creatorcontrib>Saraf, Sakshi</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Hankerson, Brett</creatorcontrib><creatorcontrib>Robinson, Sarah</creatorcontrib><creatorcontrib>Kussainova, Maira</creatorcontrib><creatorcontrib>Jain, Khushboo</creatorcontrib><collection>EconStor</collection><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entrepreneurship Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolluru, Venkatesh</au><au>John, Ranjeet</au><au>Saraf, Sakshi</au><au>Chen, Jiquan</au><au>Hankerson, Brett</au><au>Robinson, Sarah</au><au>Kussainova, Maira</au><au>Jain, Khushboo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gridded livestock density database and spatial trends for Kazakhstan</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2023-11-29</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>839</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Livestock rearing is a major source of livelihood for food and income in dryland Asia. Increasing livestock density (LSK D ) affects ecosystem structure and function, amplifies the effects of climate change, and facilitates disease transmission. Significant knowledge and data gaps regarding their density, spatial distribution, and changes over time exist but have not been explored beyond the county level. This is especially true regarding the unavailability of high-resolution gridded livestock data. Hence, we developed a gridded LSK D database of horses and small ruminants (i.e., sheep & goats) at high-resolution (1 km) for Kazakhstan (KZ) from 2000–2019 using vegetation proxies, climatic, socioeconomic, topographic, and proximity forcing variables through a random forest (RF) regression modeling. We found high-density livestock hotspots in the south-central and southeastern regions, whereas medium-density clusters in the northern and northwestern regions of KZ. Interestingly, population density, proximity to settlements, nighttime lights, and temperature contributed to the efficient downscaling of district-level censuses to gridded estimates. This database will benefit stakeholders, the research community, land managers, and policymakers at regional and national levels.</abstract><cop>Berlin</cop><pub>Springer Nature</pub><pmid>38030700</pmid><doi>10.1038/s41597-023-02736-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2110-5560</orcidid><orcidid>https://orcid.org/0000-0003-0761-9458</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4463 |
ispartof | Scientific data, 2023-11, Vol.10 (1), p.1-15, Article 839 |
issn | 2052-4463 2052-4463 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6630cf3192ce4f6e95e309fa66bc89c1 |
source | PubMed (Medline); Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 704/158/1144 704/158/1745 704/158/2453 Animals Climate change Data Descriptor Disease transmission Ecosystem Ecosystem structure Goats Horses Humanities and Social Sciences Kazakhstan Livestock multidisciplinary Population density Science Science (multidisciplinary) Sheep Spatial distribution Structure-function relationships |
title | Gridded livestock density database and spatial trends for Kazakhstan |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gridded%20livestock%20density%20database%20and%20spatial%20trends%20for%20Kazakhstan&rft.jtitle=Scientific%20data&rft.au=Kolluru,%20Venkatesh&rft.date=2023-11-29&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=839&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-023-02736-5&rft_dat=%3Cproquest_doaj_%3E2895710734%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-c3ff775b1765151d6cc1e467042d9732efa8a8737c6acbbb08e3d1e7e3e12ab63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895072030&rft_id=info:pmid/38030700&rfr_iscdi=true |