Loading…

Enhanced Photocatalytic Kinetics Using HDTMA Coated TiO2-Smectite Composite for the Oxidation of Diclofenac under Solar Light

Slow kinetics is one of the capital issues of photocatalytic technology because of its heterogeneous nature, which involves multi-step processes. Herein, we show that the simple modification of the sol-gel-based TiO2-smectite composite by hexadecyltrimethylammonium bromide (HDTMA) significantly boos...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2023-01, Vol.13 (1), p.51
Main Authors: Fellah, Imen, Djellabi, Ridha, Ben Amor, Hédi, Hamdi, Noureddine, Ordonez, Marcela Frias, Bianchi, Claudia L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Slow kinetics is one of the capital issues of photocatalytic technology because of its heterogeneous nature, which involves multi-step processes. Herein, we show that the simple modification of the sol-gel-based TiO2-smectite composite by hexadecyltrimethylammonium bromide (HDTMA) significantly boosts adsorption and photocatalytic efficient sol-gel-based light towards the removal of diclofenac from water. Three photocatalysts were prepared, including TiO2, TiO2-smectite, and HDTMA-TiO2-smectite. The materials were characterized to understand the surface interaction and crystal characteristics. In terms of photoactivity, it was found that the addition of HDTMA to TiO2-smectite improved the removal rate by twice. HDTMA changes the functional groups to TiO2-smectite composite allowing enhanced adsorption and photoactivity through the so-called Adsorb and Shuttle process. The recycling tests show that HDTMA-TiO2-smectite can be used up to four times with good performance. This modification approach could intensify the removal of pollutants from water instead of using complicated and costly techniques.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal13010051