Loading…

Modeling Active Learning in a Robot Collective

In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate...

Full description

Saved in:
Bibliographic Details
Published in:Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2020-06, Vol.24 (3), p.511-520
Main Author: ERBAŞ, Mehmet Dinçer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013
container_end_page 520
container_issue 3
container_start_page 511
container_title Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
container_volume 24
creator ERBAŞ, Mehmet Dinçer
description In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate different colors based on a predefined lexicon. It is shown that, with passive learning, the learner robot is able to partially achieve the given task. Afterwards, we design an active learning procedure in which the learner robot can manifest what it understand from the presented information. Based on this manifestation, the teacher robot determines which parts of the classification system are misunderstood and it rephrases those parts. It is shown that, with the help of active learning procedure, the robots achieve a higher success rate in learning the simple classification task. In this way, we qualitatively analyze how active learning works and why it enhances learning.
doi_str_mv 10.16984/saufenbilder.681272
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9</doaj_id><sourcerecordid>oai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGrfwIt9ga05TJLNZVk8FCqCKHgXZnMoKetGslXw7a1dkV7NPzPw8fMRcs3okinTwM2InzEMXep9KEvVMK75GZlxBrpuhHw7P8mXZDGOO0opE8BBmxlZPmYf-jRsq5Xbp69QbQKW4XdPQ4XVc-7yvmpz34fj-4pcROzHsPibc_J6d_vSPtSbp_t1u9rUjhnK684JMEZ7rRsRHEUlaXQSqPBoBCD1DmKADo3sGPfcQCNVFI5xyowQh3Zzsp64PuPOfpT0juXbZkz2eMhla7Hsk-uDVUqCYxGY4hpE441jXjowUaPyIZgDCyaWK3kcS4j_PEbtUaE9VWgnheIHFQtl-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Active Learning in a Robot Collective</title><source>EBSCOhost Business Source Ultimate</source><creator>ERBAŞ, Mehmet Dinçer</creator><creatorcontrib>ERBAŞ, Mehmet Dinçer</creatorcontrib><description>In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate different colors based on a predefined lexicon. It is shown that, with passive learning, the learner robot is able to partially achieve the given task. Afterwards, we design an active learning procedure in which the learner robot can manifest what it understand from the presented information. Based on this manifestation, the teacher robot determines which parts of the classification system are misunderstood and it rephrases those parts. It is shown that, with the help of active learning procedure, the robots achieve a higher success rate in learning the simple classification task. In this way, we qualitatively analyze how active learning works and why it enhances learning.</description><identifier>ISSN: 2147-835X</identifier><identifier>EISSN: 2147-835X</identifier><identifier>DOI: 10.16984/saufenbilder.681272</identifier><language>eng</language><publisher>Sakarya University</publisher><subject>active learning ; learning by demonstration ; multi-robot group ; robot learning</subject><ispartof>Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020-06, Vol.24 (3), p.511-520</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013</cites><orcidid>0000-0003-1762-0428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>ERBAŞ, Mehmet Dinçer</creatorcontrib><title>Modeling Active Learning in a Robot Collective</title><title>Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi</title><description>In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate different colors based on a predefined lexicon. It is shown that, with passive learning, the learner robot is able to partially achieve the given task. Afterwards, we design an active learning procedure in which the learner robot can manifest what it understand from the presented information. Based on this manifestation, the teacher robot determines which parts of the classification system are misunderstood and it rephrases those parts. It is shown that, with the help of active learning procedure, the robots achieve a higher success rate in learning the simple classification task. In this way, we qualitatively analyze how active learning works and why it enhances learning.</description><subject>active learning</subject><subject>learning by demonstration</subject><subject>multi-robot group</subject><subject>robot learning</subject><issn>2147-835X</issn><issn>2147-835X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNtKAzEQhoMoWGrfwIt9ga05TJLNZVk8FCqCKHgXZnMoKetGslXw7a1dkV7NPzPw8fMRcs3okinTwM2InzEMXep9KEvVMK75GZlxBrpuhHw7P8mXZDGOO0opE8BBmxlZPmYf-jRsq5Xbp69QbQKW4XdPQ4XVc-7yvmpz34fj-4pcROzHsPibc_J6d_vSPtSbp_t1u9rUjhnK684JMEZ7rRsRHEUlaXQSqPBoBCD1DmKADo3sGPfcQCNVFI5xyowQh3Zzsp64PuPOfpT0juXbZkz2eMhla7Hsk-uDVUqCYxGY4hpE441jXjowUaPyIZgDCyaWK3kcS4j_PEbtUaE9VWgnheIHFQtl-g</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>ERBAŞ, Mehmet Dinçer</creator><general>Sakarya University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1762-0428</orcidid></search><sort><creationdate>20200601</creationdate><title>Modeling Active Learning in a Robot Collective</title><author>ERBAŞ, Mehmet Dinçer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active learning</topic><topic>learning by demonstration</topic><topic>multi-robot group</topic><topic>robot learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ERBAŞ, Mehmet Dinçer</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ERBAŞ, Mehmet Dinçer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Active Learning in a Robot Collective</atitle><jtitle>Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>24</volume><issue>3</issue><spage>511</spage><epage>520</epage><pages>511-520</pages><issn>2147-835X</issn><eissn>2147-835X</eissn><abstract>In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate different colors based on a predefined lexicon. It is shown that, with passive learning, the learner robot is able to partially achieve the given task. Afterwards, we design an active learning procedure in which the learner robot can manifest what it understand from the presented information. Based on this manifestation, the teacher robot determines which parts of the classification system are misunderstood and it rephrases those parts. It is shown that, with the help of active learning procedure, the robots achieve a higher success rate in learning the simple classification task. In this way, we qualitatively analyze how active learning works and why it enhances learning.</abstract><pub>Sakarya University</pub><doi>10.16984/saufenbilder.681272</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1762-0428</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2147-835X
ispartof Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020-06, Vol.24 (3), p.511-520
issn 2147-835X
2147-835X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9
source EBSCOhost Business Source Ultimate
subjects active learning
learning by demonstration
multi-robot group
robot learning
title Modeling Active Learning in a Robot Collective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Active%20Learning%20in%20a%20Robot%20Collective&rft.jtitle=Sakarya%20%C3%9Cniversitesi%20Fen%20Bilimleri%20Enstit%C3%BCs%C3%BC%20Dergisi&rft.au=ERBA%C5%9E,%20Mehmet%20Din%C3%A7er&rft.date=2020-06-01&rft.volume=24&rft.issue=3&rft.spage=511&rft.epage=520&rft.pages=511-520&rft.issn=2147-835X&rft.eissn=2147-835X&rft_id=info:doi/10.16984/saufenbilder.681272&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true