Loading…
Modeling Active Learning in a Robot Collective
In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate...
Saved in:
Published in: | Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2020-06, Vol.24 (3), p.511-520 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013 |
container_end_page | 520 |
container_issue | 3 |
container_start_page | 511 |
container_title | Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi |
container_volume | 24 |
creator | ERBAŞ, Mehmet Dinçer |
description | In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate different colors based on a predefined lexicon. It is shown that, with passive learning, the learner robot is able to partially achieve the given task. Afterwards, we design an active learning procedure in which the learner robot can manifest what it understand from the presented information. Based on this manifestation, the teacher robot determines which parts of the classification system are misunderstood and it rephrases those parts. It is shown that, with the help of active learning procedure, the robots achieve a higher success rate in learning the simple classification task. In this way, we qualitatively analyze how active learning works and why it enhances learning. |
doi_str_mv | 10.16984/saufenbilder.681272 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9</doaj_id><sourcerecordid>oai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGrfwIt9ga05TJLNZVk8FCqCKHgXZnMoKetGslXw7a1dkV7NPzPw8fMRcs3okinTwM2InzEMXep9KEvVMK75GZlxBrpuhHw7P8mXZDGOO0opE8BBmxlZPmYf-jRsq5Xbp69QbQKW4XdPQ4XVc-7yvmpz34fj-4pcROzHsPibc_J6d_vSPtSbp_t1u9rUjhnK684JMEZ7rRsRHEUlaXQSqPBoBCD1DmKADo3sGPfcQCNVFI5xyowQh3Zzsp64PuPOfpT0juXbZkz2eMhla7Hsk-uDVUqCYxGY4hpE441jXjowUaPyIZgDCyaWK3kcS4j_PEbtUaE9VWgnheIHFQtl-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Active Learning in a Robot Collective</title><source>EBSCOhost Business Source Ultimate</source><creator>ERBAŞ, Mehmet Dinçer</creator><creatorcontrib>ERBAŞ, Mehmet Dinçer</creatorcontrib><description>In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate different colors based on a predefined lexicon. It is shown that, with passive learning, the learner robot is able to partially achieve the given task. Afterwards, we design an active learning procedure in which the learner robot can manifest what it understand from the presented information. Based on this manifestation, the teacher robot determines which parts of the classification system are misunderstood and it rephrases those parts. It is shown that, with the help of active learning procedure, the robots achieve a higher success rate in learning the simple classification task. In this way, we qualitatively analyze how active learning works and why it enhances learning.</description><identifier>ISSN: 2147-835X</identifier><identifier>EISSN: 2147-835X</identifier><identifier>DOI: 10.16984/saufenbilder.681272</identifier><language>eng</language><publisher>Sakarya University</publisher><subject>active learning ; learning by demonstration ; multi-robot group ; robot learning</subject><ispartof>Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020-06, Vol.24 (3), p.511-520</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013</cites><orcidid>0000-0003-1762-0428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>ERBAŞ, Mehmet Dinçer</creatorcontrib><title>Modeling Active Learning in a Robot Collective</title><title>Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi</title><description>In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate different colors based on a predefined lexicon. It is shown that, with passive learning, the learner robot is able to partially achieve the given task. Afterwards, we design an active learning procedure in which the learner robot can manifest what it understand from the presented information. Based on this manifestation, the teacher robot determines which parts of the classification system are misunderstood and it rephrases those parts. It is shown that, with the help of active learning procedure, the robots achieve a higher success rate in learning the simple classification task. In this way, we qualitatively analyze how active learning works and why it enhances learning.</description><subject>active learning</subject><subject>learning by demonstration</subject><subject>multi-robot group</subject><subject>robot learning</subject><issn>2147-835X</issn><issn>2147-835X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNtKAzEQhoMoWGrfwIt9ga05TJLNZVk8FCqCKHgXZnMoKetGslXw7a1dkV7NPzPw8fMRcs3okinTwM2InzEMXep9KEvVMK75GZlxBrpuhHw7P8mXZDGOO0opE8BBmxlZPmYf-jRsq5Xbp69QbQKW4XdPQ4XVc-7yvmpz34fj-4pcROzHsPibc_J6d_vSPtSbp_t1u9rUjhnK684JMEZ7rRsRHEUlaXQSqPBoBCD1DmKADo3sGPfcQCNVFI5xyowQh3Zzsp64PuPOfpT0juXbZkz2eMhla7Hsk-uDVUqCYxGY4hpE441jXjowUaPyIZgDCyaWK3kcS4j_PEbtUaE9VWgnheIHFQtl-g</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>ERBAŞ, Mehmet Dinçer</creator><general>Sakarya University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1762-0428</orcidid></search><sort><creationdate>20200601</creationdate><title>Modeling Active Learning in a Robot Collective</title><author>ERBAŞ, Mehmet Dinçer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active learning</topic><topic>learning by demonstration</topic><topic>multi-robot group</topic><topic>robot learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ERBAŞ, Mehmet Dinçer</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ERBAŞ, Mehmet Dinçer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Active Learning in a Robot Collective</atitle><jtitle>Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>24</volume><issue>3</issue><spage>511</spage><epage>520</epage><pages>511-520</pages><issn>2147-835X</issn><eissn>2147-835X</eissn><abstract>In this research, we model an active learning method on real robots that can visually learn from each other. For this purpose, we initially design an experiment scenario in which a teacher robot presents a simple classification task to a learner robot through which the learner robot can discriminate different colors based on a predefined lexicon. It is shown that, with passive learning, the learner robot is able to partially achieve the given task. Afterwards, we design an active learning procedure in which the learner robot can manifest what it understand from the presented information. Based on this manifestation, the teacher robot determines which parts of the classification system are misunderstood and it rephrases those parts. It is shown that, with the help of active learning procedure, the robots achieve a higher success rate in learning the simple classification task. In this way, we qualitatively analyze how active learning works and why it enhances learning.</abstract><pub>Sakarya University</pub><doi>10.16984/saufenbilder.681272</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1762-0428</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2147-835X |
ispartof | Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020-06, Vol.24 (3), p.511-520 |
issn | 2147-835X 2147-835X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9 |
source | EBSCOhost Business Source Ultimate |
subjects | active learning learning by demonstration multi-robot group robot learning |
title | Modeling Active Learning in a Robot Collective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Active%20Learning%20in%20a%20Robot%20Collective&rft.jtitle=Sakarya%20%C3%9Cniversitesi%20Fen%20Bilimleri%20Enstit%C3%BCs%C3%BC%20Dergisi&rft.au=ERBA%C5%9E,%20Mehmet%20Din%C3%A7er&rft.date=2020-06-01&rft.volume=24&rft.issue=3&rft.spage=511&rft.epage=520&rft.pages=511-520&rft.issn=2147-835X&rft.eissn=2147-835X&rft_id=info:doi/10.16984/saufenbilder.681272&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_6654c1f41627438d9c1d5c49f7a6dee9%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1902-bc34997d7783ec0a650fc5403da934a0dc4fe4ba95b12d294856f3c1201933013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |