Loading…
Interactions of the C‑Terminal Truncated DEAD-Box Protein DDX3X With RNA and Nucleotide Substrates
DDX3X is a human DEAD-box RNA helicase implicated in many important cellular processes. In addition to the RecA-like catalytic core, DDX3X contains N- and C-terminal domains. The ancillary domains of DEAD-box RNA helicases have been shown to modulate their interactions with RNA and nucleotide substr...
Saved in:
Published in: | ACS omega 2021-05, Vol.6 (19), p.12640-12646 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | DDX3X is a human DEAD-box RNA helicase implicated in many important cellular processes. In addition to the RecA-like catalytic core, DDX3X contains N- and C-terminal domains. The ancillary domains of DEAD-box RNA helicases have been shown to modulate their interactions with RNA and nucleotide substrates. Here, with the goal of understanding the role of N- and C-terminal domains of DDX3X on the DDX3X catalytic activity, we examined the interactions of RNA substrates and nucleotides with a DDX3X construct possessing the entire N-terminal domain and the catalytic core but lacking 80 residues from its C-terminal domain. Next, we compared our results with previously investigated DDX3X constructs. Our data show that the C-terminal truncated DDX3X does not bind to a blunt-ended double-helix RNA. This conclusion agrees with the data obtained on the wild-type LAF-1 protein, the DDX3X ortholog in Caenorhabditis elegans, and disagrees with the data obtained on the minimally active DDX3X construct, which misses 131 residues from its N-terminal domain and 80 residues from its C-terminal domain. The minimally active DDX3X construct was able to bind to the blunt-ended RNA construct. Combined, the previous studies and our results indicate that the N-terminal of DDX3X modulates the choice of DDX3X–RNA substrates. Furthermore, a previous study showed that the wild-type DDX3X construct hydrolyzes all four nucleotides and deoxynucleotides, both in the presence and absence of RNA. The C-terminal truncated DDX3X investigated here hydrolyzes only cytidine triphosphate (CTP) in the absence of RNA and CTP, adenosine triphosphate (ATP), and deoxyribose adenosine triphosphate (dATP) in the presence of RNA. Hence, the C-terminal truncated DDX3X has a more stringent nucleotide specificity than wild-type DDX3X. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.1c00700 |