Loading…

Application of Self-Organizing Maps to the Analysis of Ignitable Liquid and Substrate Pyrolysis Samples

Classification of un-weathered ignitable liquids is a problem that is currently addressed by visual pattern recognition under the guidelines of Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry, ASTM E1618-14. This standar...

Full description

Saved in:
Bibliographic Details
Published in:Separations 2018-12, Vol.5 (4), p.52
Main Authors: Thurn, Nicholas, Williams, Mary, Sigman, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classification of un-weathered ignitable liquids is a problem that is currently addressed by visual pattern recognition under the guidelines of Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry, ASTM E1618-14. This standard method does not separately address the identification of substrate pyrolysis patterns. This report details the use of a Kohonen self-organizing map coupled with extracted ion spectra to organize ignitable liquids and substrate pyrolysis samples on a two-dimensional map with groupings that correspond to the ASTM-classifications and separate the substrate pyrolysis samples from the ignitable liquids. The component planes give important information regarding the ions from the extracted ion spectra that contribute to the different classes. Some additional insight is gained into grouping of substrate pyrolysis samples based on the nature of the unburned material as a wood or non-wood material. Further subclassification was not apparent from the self-organizing maps (SOM) results.
ISSN:2297-8739
2297-8739
DOI:10.3390/separations5040052