Loading…

Device-Free Indoor Activity Recognition System

In this paper, we explore the properties of the Channel State Information (CSI) of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs t...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2016-11, Vol.6 (11), p.329-329
Main Authors: Al-qaness, Mohammed, Li, Fangmin, Ma, Xiaolin, Zhang, Yong, Liu, Guo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-151aa1901196df871b2267fc70f8350d61e6927aa49708c6615fe959093e4b793
cites cdi_FETCH-LOGICAL-c394t-151aa1901196df871b2267fc70f8350d61e6927aa49708c6615fe959093e4b793
container_end_page 329
container_issue 11
container_start_page 329
container_title Applied sciences
container_volume 6
creator Al-qaness, Mohammed
Li, Fangmin
Ma, Xiaolin
Zhang, Yong
Liu, Guo
description In this paper, we explore the properties of the Channel State Information (CSI) of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction method and a fast classification algorithm. The proposed system has been evaluated in a real and complex environment in both line-of-sight (LOS) and none-line-of-sight (NLOS) scenarios, and the results validate the performance of the proposed system.
doi_str_mv 10.3390/app6110329
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_66930cf505b34ec1a0269240d8991c2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_66930cf505b34ec1a0269240d8991c2a</doaj_id><sourcerecordid>4317658701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-151aa1901196df871b2267fc70f8350d61e6927aa49708c6615fe959093e4b793</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWGov_oIFLyJsnUl283Es1WqhIPhxDmk2W1LazZpsC_33rlZUnMsMw8PDDC8hlwhjxhTcmrbliMCoOiEDCoLnrEBx-mc-J6OU1tCXQiYRBmR85_beunwWncvmTRVCzCa283vfHbJnZ8Oq8Z0PTfZySJ3bXpCz2mySG333IXmb3b9OH_PF08N8Olnklqmiy7FEY1ABouJVLQUuKeWitgJqyUqoODquqDCmUAKk5RzL2qlSgWKuWArFhmR-9FbBrHUb_dbEgw7G669FiCttYuftxmnOFQNbl1AuWeEsGqC9u4BKKoWWmt51fXS1MbzvXOr01ifrNhvTuLBLGqUEYEiZ7NGrf-g67GLTf9pTggohQImeujlSNoaUoqt_DkTQn0no3yTYB1hydpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872777097</pqid></control><display><type>article</type><title>Device-Free Indoor Activity Recognition System</title><source>Publicly Available Content Database</source><creator>Al-qaness, Mohammed ; Li, Fangmin ; Ma, Xiaolin ; Zhang, Yong ; Liu, Guo</creator><creatorcontrib>Al-qaness, Mohammed ; Li, Fangmin ; Ma, Xiaolin ; Zhang, Yong ; Liu, Guo</creatorcontrib><description>In this paper, we explore the properties of the Channel State Information (CSI) of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction method and a fast classification algorithm. The proposed system has been evaluated in a real and complex environment in both line-of-sight (LOS) and none-line-of-sight (NLOS) scenarios, and the results validate the performance of the proposed system.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app6110329</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>activity recognition ; Algorithms ; Channels ; Classification ; CSI ; device-free ; Feature extraction ; Laptop ; Line of sight ; Localization ; Perceptions ; Routers ; Sensors ; Stands ; Systems analysis ; WiFi ; wireless sensing</subject><ispartof>Applied sciences, 2016-11, Vol.6 (11), p.329-329</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-151aa1901196df871b2267fc70f8350d61e6927aa49708c6615fe959093e4b793</citedby><cites>FETCH-LOGICAL-c394t-151aa1901196df871b2267fc70f8350d61e6927aa49708c6615fe959093e4b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1872777097/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1872777097?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589,74997</link.rule.ids></links><search><creatorcontrib>Al-qaness, Mohammed</creatorcontrib><creatorcontrib>Li, Fangmin</creatorcontrib><creatorcontrib>Ma, Xiaolin</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Liu, Guo</creatorcontrib><title>Device-Free Indoor Activity Recognition System</title><title>Applied sciences</title><description>In this paper, we explore the properties of the Channel State Information (CSI) of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction method and a fast classification algorithm. The proposed system has been evaluated in a real and complex environment in both line-of-sight (LOS) and none-line-of-sight (NLOS) scenarios, and the results validate the performance of the proposed system.</description><subject>activity recognition</subject><subject>Algorithms</subject><subject>Channels</subject><subject>Classification</subject><subject>CSI</subject><subject>device-free</subject><subject>Feature extraction</subject><subject>Laptop</subject><subject>Line of sight</subject><subject>Localization</subject><subject>Perceptions</subject><subject>Routers</subject><subject>Sensors</subject><subject>Stands</subject><subject>Systems analysis</subject><subject>WiFi</subject><subject>wireless sensing</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1LAzEQhoMoWGov_oIFLyJsnUl283Es1WqhIPhxDmk2W1LazZpsC_33rlZUnMsMw8PDDC8hlwhjxhTcmrbliMCoOiEDCoLnrEBx-mc-J6OU1tCXQiYRBmR85_beunwWncvmTRVCzCa283vfHbJnZ8Oq8Z0PTfZySJ3bXpCz2mySG333IXmb3b9OH_PF08N8Olnklqmiy7FEY1ABouJVLQUuKeWitgJqyUqoODquqDCmUAKk5RzL2qlSgWKuWArFhmR-9FbBrHUb_dbEgw7G669FiCttYuftxmnOFQNbl1AuWeEsGqC9u4BKKoWWmt51fXS1MbzvXOr01ifrNhvTuLBLGqUEYEiZ7NGrf-g67GLTf9pTggohQImeujlSNoaUoqt_DkTQn0no3yTYB1hydpQ</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Al-qaness, Mohammed</creator><creator>Li, Fangmin</creator><creator>Ma, Xiaolin</creator><creator>Zhang, Yong</creator><creator>Liu, Guo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20161101</creationdate><title>Device-Free Indoor Activity Recognition System</title><author>Al-qaness, Mohammed ; Li, Fangmin ; Ma, Xiaolin ; Zhang, Yong ; Liu, Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-151aa1901196df871b2267fc70f8350d61e6927aa49708c6615fe959093e4b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>activity recognition</topic><topic>Algorithms</topic><topic>Channels</topic><topic>Classification</topic><topic>CSI</topic><topic>device-free</topic><topic>Feature extraction</topic><topic>Laptop</topic><topic>Line of sight</topic><topic>Localization</topic><topic>Perceptions</topic><topic>Routers</topic><topic>Sensors</topic><topic>Stands</topic><topic>Systems analysis</topic><topic>WiFi</topic><topic>wireless sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-qaness, Mohammed</creatorcontrib><creatorcontrib>Li, Fangmin</creatorcontrib><creatorcontrib>Ma, Xiaolin</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Liu, Guo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-qaness, Mohammed</au><au>Li, Fangmin</au><au>Ma, Xiaolin</au><au>Zhang, Yong</au><au>Liu, Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Device-Free Indoor Activity Recognition System</atitle><jtitle>Applied sciences</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>6</volume><issue>11</issue><spage>329</spage><epage>329</epage><pages>329-329</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>In this paper, we explore the properties of the Channel State Information (CSI) of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction method and a fast classification algorithm. The proposed system has been evaluated in a real and complex environment in both line-of-sight (LOS) and none-line-of-sight (NLOS) scenarios, and the results validate the performance of the proposed system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app6110329</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2016-11, Vol.6 (11), p.329-329
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_66930cf505b34ec1a0269240d8991c2a
source Publicly Available Content Database
subjects activity recognition
Algorithms
Channels
Classification
CSI
device-free
Feature extraction
Laptop
Line of sight
Localization
Perceptions
Routers
Sensors
Stands
Systems analysis
WiFi
wireless sensing
title Device-Free Indoor Activity Recognition System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Device-Free%20Indoor%20Activity%20Recognition%20System&rft.jtitle=Applied%20sciences&rft.au=Al-qaness,%20Mohammed&rft.date=2016-11-01&rft.volume=6&rft.issue=11&rft.spage=329&rft.epage=329&rft.pages=329-329&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app6110329&rft_dat=%3Cproquest_doaj_%3E4317658701%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-151aa1901196df871b2267fc70f8350d61e6927aa49708c6615fe959093e4b793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1872777097&rft_id=info:pmid/&rfr_iscdi=true