Loading…

Trajectory Optimization of Industrial Robot Arms Using a Newly Elaborated “Whip-Lashing” Method

The application of the Industry 4.0′s elements—e.g., industrial robots—has a key role in the efficiency improvement of manufacturing companies. In order to reduce cycle times and increase productivity, the trajectory optimization of robot arms is essential. The purpose of the study is the elaboratio...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-12, Vol.10 (23), p.8666
Main Authors: Benotsmane, Rabab, Dudás, László, Kovács, György
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of the Industry 4.0′s elements—e.g., industrial robots—has a key role in the efficiency improvement of manufacturing companies. In order to reduce cycle times and increase productivity, the trajectory optimization of robot arms is essential. The purpose of the study is the elaboration of a new “whip-lashing” method, which, based on the motion of a robot arm, is similar to the motion of a whip. It results in achieving the optimized trajectory of the robot arms in order to increase velocity of the robot arm’s parts, thereby minimizing motion cycle times and to utilize the torque of the joints more effectively. The efficiency of the method was confirmed by a case study, which is relating to the trajectory planning of a five-degree-of-freedom RV-2AJ manipulator arm using SolidWorks and MATLAB software applications. The robot was modelled and two trajectories were created: the original path and path investigate the effects of using the whip-lashing induced robot motion. The application of the method’s algorithm resulted in a cycle time saving of 33% compared to the original path of RV-2AJ robot arm. The main added value of the study is the elaboration and implementation of the newly elaborated “whip-lashing” method which results in minimization of torque consumed; furthermore, there was a reduction of cycle times of manipulator arms’ motion, thus increasing the productivity significantly. The efficiency of the new “whip-lashing” method was confirmed by a simulation case study.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10238666