Loading…

Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method

Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder)...

Full description

Saved in:
Bibliographic Details
Published in:Materials research express 2020-05, Vol.7 (5), p.56509
Main Authors: Korim, Nada S, Hu, Lianxi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203
cites cdi_FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203
container_end_page
container_issue 5
container_start_page 56509
container_title Materials research express
container_volume 7
creator Korim, Nada S
Hu, Lianxi
description Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder) has been carried out by using a two-dimensional multi-particle finite element method (2D-MPFEM) based on single action die compaction. The effects of internal pores content, external pressure, initial packing structure on the packing densification were systematically presented. Relative density, stress distribution, internal pore deformations, and force chain movements, particle rearrangement, and interfacial behavior within spongy particles were characterized and analyzed. The results reveal that the densification behavior of the sponge powder depends basically on the internal pore's content. Moreover, at low and medium relative density ( < 0.95), the densification behavior of the sponge powder is faster than solid particles-based powder. However, at higher relative density near unity, the force required to cause further compaction is significantly larger in the sponge powder. In addition, from the microscopic analysis, the deformation behavior of the particles and the internal pores and the force chain development rely mostly on the structure configuration, internal pore content and its position.
doi_str_mv 10.1088/2053-1591/ab8cf6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_66a3bc8e391247bc90606b29cfb3a686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_66a3bc8e391247bc90606b29cfb3a686</doaj_id><sourcerecordid>2583419922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSMEUqvSfZeWkFgR6kfssZeo4lGpEgvK2vLjesajJA62A8yf6m8k05TCot3YvtffOfdKp2kuCH5PsJSXFHPWEq7IpbHSBfGiOX1svfzvfdKcl7LHGNONYpyK0-buW539AdUdIA9jiSE6U2MakYWd-RlTRmb0yKX-eAyTcfefA7idGWMZCkoBldRHjyaTa3Q9lNaaAkudfnlY5WVK4_bwHDGXOG6RQcPc19j-hVCIY6yAoIcBxrqMrLvkXzevgukLnD_cZ833Tx9vr760N18_X199uGkdJ6y2BKQHSSSWnSfWYemIBAhWMMAd7wJ1DOMgOmG5ZMJS500wQXVeATWcYnbWXK--Ppm9nnIcTD7oZKK-b6S81Q97aiEMs04CU4R2G-sUFnixVC5YZoQUi9eb1WvK6ccMpep9mvO4rK_pMr4jSlG6UHilXE6lZAiPUwnWx5D1MUV9TFGvIS-St6skpumf55B_643mGnPBsdKTDwv47gnwWd8_sdq5rA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583419922</pqid></control><display><type>article</type><title>Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method</title><source>Publicly Available Content Database</source><creator>Korim, Nada S ; Hu, Lianxi</creator><creatorcontrib>Korim, Nada S ; Hu, Lianxi</creatorcontrib><description>Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder) has been carried out by using a two-dimensional multi-particle finite element method (2D-MPFEM) based on single action die compaction. The effects of internal pores content, external pressure, initial packing structure on the packing densification were systematically presented. Relative density, stress distribution, internal pore deformations, and force chain movements, particle rearrangement, and interfacial behavior within spongy particles were characterized and analyzed. The results reveal that the densification behavior of the sponge powder depends basically on the internal pore's content. Moreover, at low and medium relative density ( &lt; 0.95), the densification behavior of the sponge powder is faster than solid particles-based powder. However, at higher relative density near unity, the force required to cause further compaction is significantly larger in the sponge powder. In addition, from the microscopic analysis, the deformation behavior of the particles and the internal pores and the force chain development rely mostly on the structure configuration, internal pore content and its position.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab8cf6</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Chain mobility ; Chains ; Copper ; Deformation analysis ; Densification ; Density ; External pressure ; Finite element analysis ; Finite element method ; MPFEM simulation ; powder compaction ; powder metallurgy ; sponge powder ; Stress distribution</subject><ispartof>Materials research express, 2020-05, Vol.7 (5), p.56509</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203</citedby><cites>FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203</cites><orcidid>0000-0002-5889-3556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583419922?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Korim, Nada S</creatorcontrib><creatorcontrib>Hu, Lianxi</creatorcontrib><title>Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder) has been carried out by using a two-dimensional multi-particle finite element method (2D-MPFEM) based on single action die compaction. The effects of internal pores content, external pressure, initial packing structure on the packing densification were systematically presented. Relative density, stress distribution, internal pore deformations, and force chain movements, particle rearrangement, and interfacial behavior within spongy particles were characterized and analyzed. The results reveal that the densification behavior of the sponge powder depends basically on the internal pore's content. Moreover, at low and medium relative density ( &lt; 0.95), the densification behavior of the sponge powder is faster than solid particles-based powder. However, at higher relative density near unity, the force required to cause further compaction is significantly larger in the sponge powder. In addition, from the microscopic analysis, the deformation behavior of the particles and the internal pores and the force chain development rely mostly on the structure configuration, internal pore content and its position.</description><subject>Chain mobility</subject><subject>Chains</subject><subject>Copper</subject><subject>Deformation analysis</subject><subject>Densification</subject><subject>Density</subject><subject>External pressure</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>MPFEM simulation</subject><subject>powder compaction</subject><subject>powder metallurgy</subject><subject>sponge powder</subject><subject>Stress distribution</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtv1DAUhSMEUqvSfZeWkFgR6kfssZeo4lGpEgvK2vLjesajJA62A8yf6m8k05TCot3YvtffOfdKp2kuCH5PsJSXFHPWEq7IpbHSBfGiOX1svfzvfdKcl7LHGNONYpyK0-buW539AdUdIA9jiSE6U2MakYWd-RlTRmb0yKX-eAyTcfefA7idGWMZCkoBldRHjyaTa3Q9lNaaAkudfnlY5WVK4_bwHDGXOG6RQcPc19j-hVCIY6yAoIcBxrqMrLvkXzevgukLnD_cZ833Tx9vr760N18_X199uGkdJ6y2BKQHSSSWnSfWYemIBAhWMMAd7wJ1DOMgOmG5ZMJS500wQXVeATWcYnbWXK--Ppm9nnIcTD7oZKK-b6S81Q97aiEMs04CU4R2G-sUFnixVC5YZoQUi9eb1WvK6ccMpep9mvO4rK_pMr4jSlG6UHilXE6lZAiPUwnWx5D1MUV9TFGvIS-St6skpumf55B_643mGnPBsdKTDwv47gnwWd8_sdq5rA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Korim, Nada S</creator><creator>Hu, Lianxi</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5889-3556</orcidid></search><sort><creationdate>20200501</creationdate><title>Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method</title><author>Korim, Nada S ; Hu, Lianxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chain mobility</topic><topic>Chains</topic><topic>Copper</topic><topic>Deformation analysis</topic><topic>Densification</topic><topic>Density</topic><topic>External pressure</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>MPFEM simulation</topic><topic>powder compaction</topic><topic>powder metallurgy</topic><topic>sponge powder</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korim, Nada S</creatorcontrib><creatorcontrib>Hu, Lianxi</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korim, Nada S</au><au>Hu, Lianxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>7</volume><issue>5</issue><spage>56509</spage><pages>56509-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder) has been carried out by using a two-dimensional multi-particle finite element method (2D-MPFEM) based on single action die compaction. The effects of internal pores content, external pressure, initial packing structure on the packing densification were systematically presented. Relative density, stress distribution, internal pore deformations, and force chain movements, particle rearrangement, and interfacial behavior within spongy particles were characterized and analyzed. The results reveal that the densification behavior of the sponge powder depends basically on the internal pore's content. Moreover, at low and medium relative density ( &lt; 0.95), the densification behavior of the sponge powder is faster than solid particles-based powder. However, at higher relative density near unity, the force required to cause further compaction is significantly larger in the sponge powder. In addition, from the microscopic analysis, the deformation behavior of the particles and the internal pores and the force chain development rely mostly on the structure configuration, internal pore content and its position.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab8cf6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5889-3556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2020-05, Vol.7 (5), p.56509
issn 2053-1591
2053-1591
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_66a3bc8e391247bc90606b29cfb3a686
source Publicly Available Content Database
subjects Chain mobility
Chains
Copper
Deformation analysis
Densification
Density
External pressure
Finite element analysis
Finite element method
MPFEM simulation
powder compaction
powder metallurgy
sponge powder
Stress distribution
title Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20the%20densification%20behavior%20and%20cold%20compaction%20mechanisms%20of%20solid%20particles-based%20powder%20and%20spongy%20particles-based%20powder%20using%20a%20multi-particle%20finite%20element%20method&rft.jtitle=Materials%20research%20express&rft.au=Korim,%20Nada%20S&rft.date=2020-05-01&rft.volume=7&rft.issue=5&rft.spage=56509&rft.pages=56509-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab8cf6&rft_dat=%3Cproquest_doaj_%3E2583419922%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583419922&rft_id=info:pmid/&rfr_iscdi=true