Loading…
Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method
Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder)...
Saved in:
Published in: | Materials research express 2020-05, Vol.7 (5), p.56509 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203 |
container_end_page | |
container_issue | 5 |
container_start_page | 56509 |
container_title | Materials research express |
container_volume | 7 |
creator | Korim, Nada S Hu, Lianxi |
description | Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder) has been carried out by using a two-dimensional multi-particle finite element method (2D-MPFEM) based on single action die compaction. The effects of internal pores content, external pressure, initial packing structure on the packing densification were systematically presented. Relative density, stress distribution, internal pore deformations, and force chain movements, particle rearrangement, and interfacial behavior within spongy particles were characterized and analyzed. The results reveal that the densification behavior of the sponge powder depends basically on the internal pore's content. Moreover, at low and medium relative density ( < 0.95), the densification behavior of the sponge powder is faster than solid particles-based powder. However, at higher relative density near unity, the force required to cause further compaction is significantly larger in the sponge powder. In addition, from the microscopic analysis, the deformation behavior of the particles and the internal pores and the force chain development rely mostly on the structure configuration, internal pore content and its position. |
doi_str_mv | 10.1088/2053-1591/ab8cf6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_66a3bc8e391247bc90606b29cfb3a686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_66a3bc8e391247bc90606b29cfb3a686</doaj_id><sourcerecordid>2583419922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSMEUqvSfZeWkFgR6kfssZeo4lGpEgvK2vLjesajJA62A8yf6m8k05TCot3YvtffOfdKp2kuCH5PsJSXFHPWEq7IpbHSBfGiOX1svfzvfdKcl7LHGNONYpyK0-buW539AdUdIA9jiSE6U2MakYWd-RlTRmb0yKX-eAyTcfefA7idGWMZCkoBldRHjyaTa3Q9lNaaAkudfnlY5WVK4_bwHDGXOG6RQcPc19j-hVCIY6yAoIcBxrqMrLvkXzevgukLnD_cZ833Tx9vr760N18_X199uGkdJ6y2BKQHSSSWnSfWYemIBAhWMMAd7wJ1DOMgOmG5ZMJS500wQXVeATWcYnbWXK--Ppm9nnIcTD7oZKK-b6S81Q97aiEMs04CU4R2G-sUFnixVC5YZoQUi9eb1WvK6ccMpep9mvO4rK_pMr4jSlG6UHilXE6lZAiPUwnWx5D1MUV9TFGvIS-St6skpumf55B_643mGnPBsdKTDwv47gnwWd8_sdq5rA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583419922</pqid></control><display><type>article</type><title>Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method</title><source>Publicly Available Content Database</source><creator>Korim, Nada S ; Hu, Lianxi</creator><creatorcontrib>Korim, Nada S ; Hu, Lianxi</creatorcontrib><description>Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder) has been carried out by using a two-dimensional multi-particle finite element method (2D-MPFEM) based on single action die compaction. The effects of internal pores content, external pressure, initial packing structure on the packing densification were systematically presented. Relative density, stress distribution, internal pore deformations, and force chain movements, particle rearrangement, and interfacial behavior within spongy particles were characterized and analyzed. The results reveal that the densification behavior of the sponge powder depends basically on the internal pore's content. Moreover, at low and medium relative density ( < 0.95), the densification behavior of the sponge powder is faster than solid particles-based powder. However, at higher relative density near unity, the force required to cause further compaction is significantly larger in the sponge powder. In addition, from the microscopic analysis, the deformation behavior of the particles and the internal pores and the force chain development rely mostly on the structure configuration, internal pore content and its position.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab8cf6</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Chain mobility ; Chains ; Copper ; Deformation analysis ; Densification ; Density ; External pressure ; Finite element analysis ; Finite element method ; MPFEM simulation ; powder compaction ; powder metallurgy ; sponge powder ; Stress distribution</subject><ispartof>Materials research express, 2020-05, Vol.7 (5), p.56509</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203</citedby><cites>FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203</cites><orcidid>0000-0002-5889-3556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583419922?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Korim, Nada S</creatorcontrib><creatorcontrib>Hu, Lianxi</creatorcontrib><title>Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder) has been carried out by using a two-dimensional multi-particle finite element method (2D-MPFEM) based on single action die compaction. The effects of internal pores content, external pressure, initial packing structure on the packing densification were systematically presented. Relative density, stress distribution, internal pore deformations, and force chain movements, particle rearrangement, and interfacial behavior within spongy particles were characterized and analyzed. The results reveal that the densification behavior of the sponge powder depends basically on the internal pore's content. Moreover, at low and medium relative density ( < 0.95), the densification behavior of the sponge powder is faster than solid particles-based powder. However, at higher relative density near unity, the force required to cause further compaction is significantly larger in the sponge powder. In addition, from the microscopic analysis, the deformation behavior of the particles and the internal pores and the force chain development rely mostly on the structure configuration, internal pore content and its position.</description><subject>Chain mobility</subject><subject>Chains</subject><subject>Copper</subject><subject>Deformation analysis</subject><subject>Densification</subject><subject>Density</subject><subject>External pressure</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>MPFEM simulation</subject><subject>powder compaction</subject><subject>powder metallurgy</subject><subject>sponge powder</subject><subject>Stress distribution</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUtv1DAUhSMEUqvSfZeWkFgR6kfssZeo4lGpEgvK2vLjesajJA62A8yf6m8k05TCot3YvtffOfdKp2kuCH5PsJSXFHPWEq7IpbHSBfGiOX1svfzvfdKcl7LHGNONYpyK0-buW539AdUdIA9jiSE6U2MakYWd-RlTRmb0yKX-eAyTcfefA7idGWMZCkoBldRHjyaTa3Q9lNaaAkudfnlY5WVK4_bwHDGXOG6RQcPc19j-hVCIY6yAoIcBxrqMrLvkXzevgukLnD_cZ833Tx9vr760N18_X199uGkdJ6y2BKQHSSSWnSfWYemIBAhWMMAd7wJ1DOMgOmG5ZMJS500wQXVeATWcYnbWXK--Ppm9nnIcTD7oZKK-b6S81Q97aiEMs04CU4R2G-sUFnixVC5YZoQUi9eb1WvK6ccMpep9mvO4rK_pMr4jSlG6UHilXE6lZAiPUwnWx5D1MUV9TFGvIS-St6skpumf55B_643mGnPBsdKTDwv47gnwWd8_sdq5rA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Korim, Nada S</creator><creator>Hu, Lianxi</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5889-3556</orcidid></search><sort><creationdate>20200501</creationdate><title>Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method</title><author>Korim, Nada S ; Hu, Lianxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chain mobility</topic><topic>Chains</topic><topic>Copper</topic><topic>Deformation analysis</topic><topic>Densification</topic><topic>Density</topic><topic>External pressure</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>MPFEM simulation</topic><topic>powder compaction</topic><topic>powder metallurgy</topic><topic>sponge powder</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korim, Nada S</creatorcontrib><creatorcontrib>Hu, Lianxi</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korim, Nada S</au><au>Hu, Lianxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>7</volume><issue>5</issue><spage>56509</spage><pages>56509-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>Powders could be based on solid particles or spongy particles depending on the powder manufacturing procedures. In this article, the numerical study of the cold compaction process for copper solid particles-based powder (i.e. Cu solid powder) and spongy particles-based powder (i.e. Cu sponge powder) has been carried out by using a two-dimensional multi-particle finite element method (2D-MPFEM) based on single action die compaction. The effects of internal pores content, external pressure, initial packing structure on the packing densification were systematically presented. Relative density, stress distribution, internal pore deformations, and force chain movements, particle rearrangement, and interfacial behavior within spongy particles were characterized and analyzed. The results reveal that the densification behavior of the sponge powder depends basically on the internal pore's content. Moreover, at low and medium relative density ( < 0.95), the densification behavior of the sponge powder is faster than solid particles-based powder. However, at higher relative density near unity, the force required to cause further compaction is significantly larger in the sponge powder. In addition, from the microscopic analysis, the deformation behavior of the particles and the internal pores and the force chain development rely mostly on the structure configuration, internal pore content and its position.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab8cf6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5889-3556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2020-05, Vol.7 (5), p.56509 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_66a3bc8e391247bc90606b29cfb3a686 |
source | Publicly Available Content Database |
subjects | Chain mobility Chains Copper Deformation analysis Densification Density External pressure Finite element analysis Finite element method MPFEM simulation powder compaction powder metallurgy sponge powder Stress distribution |
title | Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20the%20densification%20behavior%20and%20cold%20compaction%20mechanisms%20of%20solid%20particles-based%20powder%20and%20spongy%20particles-based%20powder%20using%20a%20multi-particle%20finite%20element%20method&rft.jtitle=Materials%20research%20express&rft.au=Korim,%20Nada%20S&rft.date=2020-05-01&rft.volume=7&rft.issue=5&rft.spage=56509&rft.pages=56509-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab8cf6&rft_dat=%3Cproquest_doaj_%3E2583419922%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-1e8de818084d1bc08c18eefb63e0454f2c300f646b5836b2cdafaf94d9e2a5203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583419922&rft_id=info:pmid/&rfr_iscdi=true |