Loading…
Application of Improved Hilbert–Huang Transform to Partial Discharge Defect Model Recognition of Power Cables
As a key concern in a power system, a deteriorated insulation is likely to bring about a partial discharge phenomenon and hence degrades the power supply quality. Thus, a partial discharge test has been turned into an approach of significance to protect a power system from an unexpected malfunction....
Saved in:
Published in: | Applied sciences 2017-10, Vol.7 (10), p.1021 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As a key concern in a power system, a deteriorated insulation is likely to bring about a partial discharge phenomenon and hence degrades the power supply quality. Thus, a partial discharge test has been turned into an approach of significance to protect a power system from an unexpected malfunction. An improved Hilbert-Huang Transformation (HHT) is proposed in this work as an effective way to address the issues of an optimal shifting number and illusive components, both suffered in a conventional HHT approach, and is then applied to a defect mode recognition for a partial discharge signal analysis in the case of a cross-linked polyethylene insulated power cable. As the first step, the partial discharge signal detected is converted through the proposed improved HHT to a time-frequency-energy 3D spectrum. Then as the second step, the fractal features contained therein are extracted by way of a fractal theory, and in the end the defect modes are recognized as intended by use of an extension method. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app7101021 |