Loading…
Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement
In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features...
Saved in:
Published in: | Journal of Telecommunications and Information Technology 2023-06 (1), p.32-36 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 36 |
container_issue | 1 |
container_start_page | 32 |
container_title | Journal of Telecommunications and Information Technology |
container_volume | |
creator | Renk, Rafał Hołubowicz, Witold |
description | In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit. |
doi_str_mv | 10.26636/jtit.2011.1.1131 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_671a37b49159484492f9b42c39bcb28d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_671a37b49159484492f9b42c39bcb28d</doaj_id><sourcerecordid>oai_doaj_org_article_671a37b49159484492f9b42c39bcb28d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1511-7fab5ed01296904817dd9e8b488b5d5b74be9bb381fc9c855664e10f06a147c83</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhhdRsGgfwLu8wNZMTptc1tpqoR7Aw21Istk2td1INkX69m5bkf9ihp_hY_iK4gbwiAhBxe06hzwiGGDUByicFQOQSpVScnLe7xyrknFOL4th160xxkQJjgkZFJ_jNm7NZo_uffYuh9iiWTJb_xPTF7ozna9RXz2Z7FahXaLXXep2IaMmJvTs8_HqzbtdCnmPpu3KtM5vfZuvi4vGbDo__JtXxcds-j55LBcvD_PJeFE64ABl1RjLfY2h_0dhJqGqa-WlZVJaXnNbMeuVtVRC45STnAvBPOAGCwOscpJeFfMTt45mrb9T2Jq019EEfSxiWmqTcnAbr0UFhlaWKeCKScYUaZRlxFFlnSWy7llwYrkUuy755p8HWB8964NnffCs-_Se6S-22XEJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement</title><source>Directory of Open Access Journals(OpenAccess)</source><creator>Renk, Rafał ; Hołubowicz, Witold</creator><creatorcontrib>Renk, Rafał ; Hołubowicz, Witold</creatorcontrib><description>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit.</description><identifier>ISSN: 1509-4553</identifier><identifier>EISSN: 1899-8852</identifier><identifier>DOI: 10.26636/jtit.2011.1.1131</identifier><language>eng</language><publisher>National Institute of Telecommunications</publisher><subject>anomaly detection ; intrusion detection ; matching pursuit ; network security ; signal processing</subject><ispartof>Journal of Telecommunications and Information Technology, 2023-06 (1), p.32-36</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,27905,27906</link.rule.ids></links><search><creatorcontrib>Renk, Rafał</creatorcontrib><creatorcontrib>Hołubowicz, Witold</creatorcontrib><title>Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement</title><title>Journal of Telecommunications and Information Technology</title><description>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit.</description><subject>anomaly detection</subject><subject>intrusion detection</subject><subject>matching pursuit</subject><subject>network security</subject><subject>signal processing</subject><issn>1509-4553</issn><issn>1899-8852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kNtKAzEQhhdRsGgfwLu8wNZMTptc1tpqoR7Aw21Istk2td1INkX69m5bkf9ihp_hY_iK4gbwiAhBxe06hzwiGGDUByicFQOQSpVScnLe7xyrknFOL4th160xxkQJjgkZFJ_jNm7NZo_uffYuh9iiWTJb_xPTF7ozna9RXz2Z7FahXaLXXep2IaMmJvTs8_HqzbtdCnmPpu3KtM5vfZuvi4vGbDo__JtXxcds-j55LBcvD_PJeFE64ABl1RjLfY2h_0dhJqGqa-WlZVJaXnNbMeuVtVRC45STnAvBPOAGCwOscpJeFfMTt45mrb9T2Jq019EEfSxiWmqTcnAbr0UFhlaWKeCKScYUaZRlxFFlnSWy7llwYrkUuy755p8HWB8964NnffCs-_Se6S-22XEJ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Renk, Rafał</creator><creator>Hołubowicz, Witold</creator><general>National Institute of Telecommunications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20230601</creationdate><title>Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement</title><author>Renk, Rafał ; Hołubowicz, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1511-7fab5ed01296904817dd9e8b488b5d5b74be9bb381fc9c855664e10f06a147c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anomaly detection</topic><topic>intrusion detection</topic><topic>matching pursuit</topic><topic>network security</topic><topic>signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renk, Rafał</creatorcontrib><creatorcontrib>Hołubowicz, Witold</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Journal of Telecommunications and Information Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renk, Rafał</au><au>Hołubowicz, Witold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement</atitle><jtitle>Journal of Telecommunications and Information Technology</jtitle><date>2023-06-01</date><risdate>2023</risdate><issue>1</issue><spage>32</spage><epage>36</epage><pages>32-36</pages><issn>1509-4553</issn><eissn>1899-8852</eissn><abstract>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit.</abstract><pub>National Institute of Telecommunications</pub><doi>10.26636/jtit.2011.1.1131</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1509-4553 |
ispartof | Journal of Telecommunications and Information Technology, 2023-06 (1), p.32-36 |
issn | 1509-4553 1899-8852 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_671a37b49159484492f9b42c39bcb28d |
source | Directory of Open Access Journals(OpenAccess) |
subjects | anomaly detection intrusion detection matching pursuit network security signal processing |
title | Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20Detection%20Framework%20Based%20on%20Matching%20Pursuit%20for%20Network%20Security%20Enhancement&rft.jtitle=Journal%20of%20Telecommunications%20and%20Information%20Technology&rft.au=Renk,%20Rafa%C5%82&rft.date=2023-06-01&rft.issue=1&rft.spage=32&rft.epage=36&rft.pages=32-36&rft.issn=1509-4553&rft.eissn=1899-8852&rft_id=info:doi/10.26636/jtit.2011.1.1131&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_671a37b49159484492f9b42c39bcb28d%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1511-7fab5ed01296904817dd9e8b488b5d5b74be9bb381fc9c855664e10f06a147c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |