Loading…

Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement

In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Telecommunications and Information Technology 2023-06 (1), p.32-36
Main Authors: Renk, Rafał, Hołubowicz, Witold
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 36
container_issue 1
container_start_page 32
container_title Journal of Telecommunications and Information Technology
container_volume
creator Renk, Rafał
Hołubowicz, Witold
description In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit.
doi_str_mv 10.26636/jtit.2011.1.1131
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_671a37b49159484492f9b42c39bcb28d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_671a37b49159484492f9b42c39bcb28d</doaj_id><sourcerecordid>oai_doaj_org_article_671a37b49159484492f9b42c39bcb28d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1511-7fab5ed01296904817dd9e8b488b5d5b74be9bb381fc9c855664e10f06a147c83</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhhdRsGgfwLu8wNZMTptc1tpqoR7Aw21Istk2td1INkX69m5bkf9ihp_hY_iK4gbwiAhBxe06hzwiGGDUByicFQOQSpVScnLe7xyrknFOL4th160xxkQJjgkZFJ_jNm7NZo_uffYuh9iiWTJb_xPTF7ozna9RXz2Z7FahXaLXXep2IaMmJvTs8_HqzbtdCnmPpu3KtM5vfZuvi4vGbDo__JtXxcds-j55LBcvD_PJeFE64ABl1RjLfY2h_0dhJqGqa-WlZVJaXnNbMeuVtVRC45STnAvBPOAGCwOscpJeFfMTt45mrb9T2Jq019EEfSxiWmqTcnAbr0UFhlaWKeCKScYUaZRlxFFlnSWy7llwYrkUuy755p8HWB8964NnffCs-_Se6S-22XEJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement</title><source>Directory of Open Access Journals(OpenAccess)</source><creator>Renk, Rafał ; Hołubowicz, Witold</creator><creatorcontrib>Renk, Rafał ; Hołubowicz, Witold</creatorcontrib><description>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit.</description><identifier>ISSN: 1509-4553</identifier><identifier>EISSN: 1899-8852</identifier><identifier>DOI: 10.26636/jtit.2011.1.1131</identifier><language>eng</language><publisher>National Institute of Telecommunications</publisher><subject>anomaly detection ; intrusion detection ; matching pursuit ; network security ; signal processing</subject><ispartof>Journal of Telecommunications and Information Technology, 2023-06 (1), p.32-36</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,27905,27906</link.rule.ids></links><search><creatorcontrib>Renk, Rafał</creatorcontrib><creatorcontrib>Hołubowicz, Witold</creatorcontrib><title>Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement</title><title>Journal of Telecommunications and Information Technology</title><description>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit.</description><subject>anomaly detection</subject><subject>intrusion detection</subject><subject>matching pursuit</subject><subject>network security</subject><subject>signal processing</subject><issn>1509-4553</issn><issn>1899-8852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kNtKAzEQhhdRsGgfwLu8wNZMTptc1tpqoR7Aw21Istk2td1INkX69m5bkf9ihp_hY_iK4gbwiAhBxe06hzwiGGDUByicFQOQSpVScnLe7xyrknFOL4th160xxkQJjgkZFJ_jNm7NZo_uffYuh9iiWTJb_xPTF7ozna9RXz2Z7FahXaLXXep2IaMmJvTs8_HqzbtdCnmPpu3KtM5vfZuvi4vGbDo__JtXxcds-j55LBcvD_PJeFE64ABl1RjLfY2h_0dhJqGqa-WlZVJaXnNbMeuVtVRC45STnAvBPOAGCwOscpJeFfMTt45mrb9T2Jq019EEfSxiWmqTcnAbr0UFhlaWKeCKScYUaZRlxFFlnSWy7llwYrkUuy755p8HWB8964NnffCs-_Se6S-22XEJ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Renk, Rafał</creator><creator>Hołubowicz, Witold</creator><general>National Institute of Telecommunications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20230601</creationdate><title>Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement</title><author>Renk, Rafał ; Hołubowicz, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1511-7fab5ed01296904817dd9e8b488b5d5b74be9bb381fc9c855664e10f06a147c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anomaly detection</topic><topic>intrusion detection</topic><topic>matching pursuit</topic><topic>network security</topic><topic>signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renk, Rafał</creatorcontrib><creatorcontrib>Hołubowicz, Witold</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Journal of Telecommunications and Information Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renk, Rafał</au><au>Hołubowicz, Witold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement</atitle><jtitle>Journal of Telecommunications and Information Technology</jtitle><date>2023-06-01</date><risdate>2023</risdate><issue>1</issue><spage>32</spage><epage>36</epage><pages>32-36</pages><issn>1509-4553</issn><eissn>1899-8852</eissn><abstract>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit.</abstract><pub>National Institute of Telecommunications</pub><doi>10.26636/jtit.2011.1.1131</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1509-4553
ispartof Journal of Telecommunications and Information Technology, 2023-06 (1), p.32-36
issn 1509-4553
1899-8852
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_671a37b49159484492f9b42c39bcb28d
source Directory of Open Access Journals(OpenAccess)
subjects anomaly detection
intrusion detection
matching pursuit
network security
signal processing
title Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20Detection%20Framework%20Based%20on%20Matching%20Pursuit%20for%20Network%20Security%20Enhancement&rft.jtitle=Journal%20of%20Telecommunications%20and%20Information%20Technology&rft.au=Renk,%20Rafa%C5%82&rft.date=2023-06-01&rft.issue=1&rft.spage=32&rft.epage=36&rft.pages=32-36&rft.issn=1509-4553&rft.eissn=1899-8852&rft_id=info:doi/10.26636/jtit.2011.1.1131&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_671a37b49159484492f9b42c39bcb28d%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1511-7fab5ed01296904817dd9e8b488b5d5b74be9bb381fc9c855664e10f06a147c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true