Loading…

A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique

Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impract...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-12
Main Authors: Jalali, Alireza, Shayegan, Mohammad Amin, Jalab, Hamid A., Herawan, Tutut, Teh, Ying-Wah, Aghabozorgi, Said
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c572t-8741318f83045fbabba765928a72d8daa54cb55dc19f2af12b54914b1732d17c3
cites cdi_FETCH-LOGICAL-c572t-8741318f83045fbabba765928a72d8daa54cb55dc19f2af12b54914b1732d17c3
container_end_page 12
container_issue 2014
container_start_page 1
container_title TheScientificWorld
container_volume 2014
creator Jalali, Alireza
Shayegan, Mohammad Amin
Jalab, Hamid A.
Herawan, Tutut
Teh, Ying-Wah
Aghabozorgi, Said
description Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.
doi_str_mv 10.1155/2014/562194
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_673ff7b1f7e143eb9b64f182a323d764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413712116</galeid><doaj_id>oai_doaj_org_article_673ff7b1f7e143eb9b64f182a323d764</doaj_id><sourcerecordid>A413712116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-8741318f83045fbabba765928a72d8daa54cb55dc19f2af12b54914b1732d17c3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEokvhxB1Z4oJA23r8mVyQwvLRSpU4sEi9WY5j73qV2MXOgvbf4yWlajkhHyzPPPN6ZvRW1UvAZwCcnxMM7JwLAg17VC2AU7mUjF0_rhaEcrEUwPBJ9SznHca0lsCfVieENTVphFhU1y26OHTJ96gdNjH5aTsiFxNaDfs82eTDBkWH1n606Ft52ow-6kmjDzrbHsWAWud88NOhZHUyW7S2Zhv8j719Xj1xesj2xe19Wn3__Gm9ulheff1yuWqvloZLMi1ryYBC7WqKGXed7jotBW9IrSXp615rzkzHeW-gcUQ7IB1nDbAOJCU9SENPq8tZt496p26SH3U6qKi9-hOIaaN0mrwZrBKSOic7cNICo7ZrOsEc1ERTQnspWNF6P2vd7LvR9saGKenhgejDTPBbtYk_FW1qVoumCLy5FUix7CBPavTZ2GHQwcZ9VsAZoRhzOKKv_0F3cZ9CWVWhBJOi5uzY0dlMbXQZwAcXy7-mnN6O3sRgnS_xtuxQAgEQpeDdXGBSzDlZd9c9YHW0izraRc12KfSr-wPfsX_9UYC3M7D1ode__P-p2YJYp-_BHAOm9DefFs7a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564768544</pqid></control><display><type>article</type><title>A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Jalali, Alireza ; Shayegan, Mohammad Amin ; Jalab, Hamid A. ; Herawan, Tutut ; Teh, Ying-Wah ; Aghabozorgi, Said</creator><contributor>Chen, H. ; Ji, P. ; Zeng, Y.</contributor><creatorcontrib>Jalali, Alireza ; Shayegan, Mohammad Amin ; Jalab, Hamid A. ; Herawan, Tutut ; Teh, Ying-Wah ; Aghabozorgi, Said ; Chen, H. ; Ji, P. ; Zeng, Y.</creatorcontrib><description>Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/562194</identifier><identifier>PMID: 24982966</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Cluster Analysis ; Clustering (Computers) ; Experiments ; Methods ; Pattern Recognition, Automated ; Product development ; Prototypes ; Time series ; Time-series analysis</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-12</ispartof><rights>Copyright © 2014 Saeed Aghabozorgi et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Saeed Aghabozorgi et al. Saeed Aghabozorgi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Saeed Aghabozorgi et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-8741318f83045fbabba765928a72d8daa54cb55dc19f2af12b54914b1732d17c3</citedby><cites>FETCH-LOGICAL-c572t-8741318f83045fbabba765928a72d8daa54cb55dc19f2af12b54914b1732d17c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1564768544/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1564768544?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24982966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, H.</contributor><contributor>Ji, P.</contributor><contributor>Zeng, Y.</contributor><creatorcontrib>Jalali, Alireza</creatorcontrib><creatorcontrib>Shayegan, Mohammad Amin</creatorcontrib><creatorcontrib>Jalab, Hamid A.</creatorcontrib><creatorcontrib>Herawan, Tutut</creatorcontrib><creatorcontrib>Teh, Ying-Wah</creatorcontrib><creatorcontrib>Aghabozorgi, Said</creatorcontrib><title>A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.</description><subject>Algorithms</subject><subject>Cluster Analysis</subject><subject>Clustering (Computers)</subject><subject>Experiments</subject><subject>Methods</subject><subject>Pattern Recognition, Automated</subject><subject>Product development</subject><subject>Prototypes</subject><subject>Time series</subject><subject>Time-series analysis</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEokvhxB1Z4oJA23r8mVyQwvLRSpU4sEi9WY5j73qV2MXOgvbf4yWlajkhHyzPPPN6ZvRW1UvAZwCcnxMM7JwLAg17VC2AU7mUjF0_rhaEcrEUwPBJ9SznHca0lsCfVieENTVphFhU1y26OHTJ96gdNjH5aTsiFxNaDfs82eTDBkWH1n606Ft52ow-6kmjDzrbHsWAWud88NOhZHUyW7S2Zhv8j719Xj1xesj2xe19Wn3__Gm9ulheff1yuWqvloZLMi1ryYBC7WqKGXed7jotBW9IrSXp615rzkzHeW-gcUQ7IB1nDbAOJCU9SENPq8tZt496p26SH3U6qKi9-hOIaaN0mrwZrBKSOic7cNICo7ZrOsEc1ERTQnspWNF6P2vd7LvR9saGKenhgejDTPBbtYk_FW1qVoumCLy5FUix7CBPavTZ2GHQwcZ9VsAZoRhzOKKv_0F3cZ9CWVWhBJOi5uzY0dlMbXQZwAcXy7-mnN6O3sRgnS_xtuxQAgEQpeDdXGBSzDlZd9c9YHW0izraRc12KfSr-wPfsX_9UYC3M7D1ode__P-p2YJYp-_BHAOm9DefFs7a</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Jalali, Alireza</creator><creator>Shayegan, Mohammad Amin</creator><creator>Jalab, Hamid A.</creator><creator>Herawan, Tutut</creator><creator>Teh, Ying-Wah</creator><creator>Aghabozorgi, Said</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique</title><author>Jalali, Alireza ; Shayegan, Mohammad Amin ; Jalab, Hamid A. ; Herawan, Tutut ; Teh, Ying-Wah ; Aghabozorgi, Said</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-8741318f83045fbabba765928a72d8daa54cb55dc19f2af12b54914b1732d17c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Cluster Analysis</topic><topic>Clustering (Computers)</topic><topic>Experiments</topic><topic>Methods</topic><topic>Pattern Recognition, Automated</topic><topic>Product development</topic><topic>Prototypes</topic><topic>Time series</topic><topic>Time-series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalali, Alireza</creatorcontrib><creatorcontrib>Shayegan, Mohammad Amin</creatorcontrib><creatorcontrib>Jalab, Hamid A.</creatorcontrib><creatorcontrib>Herawan, Tutut</creatorcontrib><creatorcontrib>Teh, Ying-Wah</creatorcontrib><creatorcontrib>Aghabozorgi, Said</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalali, Alireza</au><au>Shayegan, Mohammad Amin</au><au>Jalab, Hamid A.</au><au>Herawan, Tutut</au><au>Teh, Ying-Wah</au><au>Aghabozorgi, Said</au><au>Chen, H.</au><au>Ji, P.</au><au>Zeng, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24982966</pmid><doi>10.1155/2014/562194</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2356-6140
ispartof TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-12
issn 2356-6140
1537-744X
1537-744X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_673ff7b1f7e143eb9b64f182a323d764
source Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central
subjects Algorithms
Cluster Analysis
Clustering (Computers)
Experiments
Methods
Pattern Recognition, Automated
Product development
Prototypes
Time series
Time-series analysis
title A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Algorithm%20for%20Clustering%20of%20Time%20Series%20Data%20Based%20on%20Affinity%20Search%20Technique&rft.jtitle=TheScientificWorld&rft.au=Jalali,%20Alireza&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/562194&rft_dat=%3Cgale_doaj_%3EA413712116%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-8741318f83045fbabba765928a72d8daa54cb55dc19f2af12b54914b1732d17c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1564768544&rft_id=info:pmid/24982966&rft_galeid=A413712116&rfr_iscdi=true