Loading…
Fuzzy Parameterized Complex Neutrosophic Soft Expert Set for Decision under Uncertainty
In the definition of the complex neutrosophic soft expert set (CNSES), parameters set is a classical set, and the parameters have the same degree of importance, which is considered as 1. This poses a limitation in modeling of some problems. This paper introduces the concept of fuzzy parameterized co...
Saved in:
Published in: | Symmetry (Basel) 2019-03, Vol.11 (3), p.382 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the definition of the complex neutrosophic soft expert set (CNSES), parameters set is a classical set, and the parameters have the same degree of importance, which is considered as 1. This poses a limitation in modeling of some problems. This paper introduces the concept of fuzzy parameterized complex neutrosophic soft expert set (FP-CNSES) to handle this issue by assigning a degree of importance to each of the problem parameters. We further develop FP-CNSES by establishing the concept of weighted fuzzy parameterized complex neutrosophic soft expert set (WFP-CNSES) based on the idea that each expert has a relative weight. These new mathematical frameworks reduce the chance of unfairness in the decision making process. Some essential operations with their properties and relevant laws related to the notion of FP-CNSES are defined and verified. The notation of mapping on fuzzy parameterized complex neutrosophic soft expert classes is defined and some properties of fuzzy parameterized complex neutrosophic soft expert images and inverse images was investigated. FP-CNSES is used to put forth an algorithm on decision-making by converting it from complex state to real state and subsequently provided the detailed decision steps. Then, we provide the comparison of FP-CNSES to the current methods to show the ascendancy of our proposed method. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym11030382 |