Loading…

Fuzzy Parameterized Complex Neutrosophic Soft Expert Set for Decision under Uncertainty

In the definition of the complex neutrosophic soft expert set (CNSES), parameters set is a classical set, and the parameters have the same degree of importance, which is considered as 1. This poses a limitation in modeling of some problems. This paper introduces the concept of fuzzy parameterized co...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2019-03, Vol.11 (3), p.382
Main Authors: Al-Quran, Ashraf, Hassan, Nasruddin, Alkhazaleh, Shawkat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the definition of the complex neutrosophic soft expert set (CNSES), parameters set is a classical set, and the parameters have the same degree of importance, which is considered as 1. This poses a limitation in modeling of some problems. This paper introduces the concept of fuzzy parameterized complex neutrosophic soft expert set (FP-CNSES) to handle this issue by assigning a degree of importance to each of the problem parameters. We further develop FP-CNSES by establishing the concept of weighted fuzzy parameterized complex neutrosophic soft expert set (WFP-CNSES) based on the idea that each expert has a relative weight. These new mathematical frameworks reduce the chance of unfairness in the decision making process. Some essential operations with their properties and relevant laws related to the notion of FP-CNSES are defined and verified. The notation of mapping on fuzzy parameterized complex neutrosophic soft expert classes is defined and some properties of fuzzy parameterized complex neutrosophic soft expert images and inverse images was investigated. FP-CNSES is used to put forth an algorithm on decision-making by converting it from complex state to real state and subsequently provided the detailed decision steps. Then, we provide the comparison of FP-CNSES to the current methods to show the ascendancy of our proposed method.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym11030382