Loading…
Plant Defence Induction by Meyerozyma guilliermondii in Vitis vinifera L
This article emphasizes the crucial importance of yeast Meyerozyma guilliermondii (Patent CECT13190) as a biological control agent (BCA) in eliciting defensive responses in vine plants, and is supported by comprehensive physiological, proteomic, and transcriptomic analyses. The results demonstrate t...
Saved in:
Published in: | Agronomy (Basel) 2023-11, Vol.13 (11), p.2780 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article emphasizes the crucial importance of yeast Meyerozyma guilliermondii (Patent CECT13190) as a biological control agent (BCA) in eliciting defensive responses in vine plants, and is supported by comprehensive physiological, proteomic, and transcriptomic analyses. The results demonstrate that the BCA M. guilliermondii can induce enhanced defensive responses, as reflected in the regulation of key proteins. Notably, the upregulated expression of calmodulin and pathogenesis-related protein 10 (PR-10) are indicative of a complex interplay between calcium signalling, salicylic acid accumulation, and the elicitation of plant defence responses against pathogens. Furthermore, changes in microtubule dynamics and proteins related to protein synthesis and folding are observed, confirming the elicitation of defence responses. The correspondence between proteomic and transcriptomic analyses for genes codifying pathogenesis-related proteins, such as Vcgns1, VviTL1, and Vcchit1b, reinforces the empirical robustness of our findings. Collectively, our research explores the modulation of plant defences by the BCA, opening promising avenues for innovative agricultural strategies that enhance crop resilience and productivity. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy13112780 |