Loading…

Temperature-Decoupled Single-Crystal MgO Fiber-Optic Fabry-Perot Vibration Sensor Based on MEMS Technology for Harsh Environments

A high-temperature-resistance single-crystal magnesium oxide (MgO) extrinsic Fabry-Perot (FP) interferometer (EFPI) fiber-optic vibration sensor is proposed and experimentally demonstrated at 1000 °C. Due to the excellent thermal properties (melting point > 2800 °C) and optical properties (transm...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2024-05, Vol.15 (5), p.616
Main Authors: Su, Chengxin, Jia, Pinggang, Zhao, Aihao, Tu, Jiacheng, Liu, Jia, Ren, Qianyu, Xiong, Jijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-temperature-resistance single-crystal magnesium oxide (MgO) extrinsic Fabry-Perot (FP) interferometer (EFPI) fiber-optic vibration sensor is proposed and experimentally demonstrated at 1000 °C. Due to the excellent thermal properties (melting point > 2800 °C) and optical properties (transmittance ≥ 90%), MgO is chosen as the ideal material to be placed in the high-temperature testing area. The combination of wet chemical etching and direct bonding is used to construct an all-MgO sensor head, which is favorable to reduce the temperature gradient inside the sensor structure and avoid sensor failure. A temperature decoupling method is proposed to eliminate the cross-sensitivity between temperature and vibration, improving the accuracy of vibration detection. The experimental results show that the sensor is stable at 20-1000 °C and 2-20 g, with a sensitivity of 0.0073 rad (20 °C). The maximum nonlinearity error of the vibration sensor measurement after temperature decoupling is 1.17%. The sensor with a high temperature resistance and outstanding dynamic performance has the potential for applications in testing aero-engines and gas turbine engines.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi15050616