Loading…
Vegetation mapping in drained peatlands for the carbon research objectives: a case study from Kaliningrad Region
This article describes the vegetation mapping procedure adopted for the Rosyanka Carbon Supersite in Kaliningrad Province (Russia). To achieve the research objectives of the Carbon Supersite Programme which include the assessment of greenhouse gas (GHG) emissions, monitoring of ecosystem changes and...
Saved in:
Published in: | Mires and peat 2023-01, Vol.29 (19), p.1-25 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 25 |
container_issue | 19 |
container_start_page | 1 |
container_title | Mires and peat |
container_volume | 29 |
creator | Maxim Napreenko Aleksandr Danchenkov Tatiana Napreenko-Dorokhova Amalj Samerkhanova |
description | This article describes the vegetation mapping procedure adopted for the Rosyanka Carbon Supersite in Kaliningrad Province (Russia). To achieve the research objectives of the Carbon Supersite Programme which include the assessment of greenhouse gas (GHG) emissions, monitoring of ecosystem changes and modelling of the rewetting process, a detailed basemap of vegetation is required. The GIS-based vegetation map prepared includes over 100 polygon features assigned to 28 vegetation classification units comprising 6 vegetation types and 22 plant community categories, the latter approximating to associations. The mapped phytosociological units can be converted to ecology-based ones which can be used, in combination with additional data, to assign GHG flux values to the mapped units and thus to assess emission/sequestration rates at different peatland sites. Thus, the results of our investigation provide options for developing GHG flux estimation methodologies, e.g. GEST approach or ‘vegetation - water level proxy’ approach. We also outline possibilities for further applications of the vegetation map in relation to carbon supersite purposes. The fine-scale geobotanical map provides high-resolution cartographic material that can be correlated to land cover classes in other types of vegetation cover maps that may be required for research relating to peatland restoration, and the mapped phytosociological units may serve as a basis for increasing resolution to reveal further detail of the spatial heterogeneity of the vegetation cover. |
doi_str_mv | 10.19189/MaP.2022.OMB.Sc.2020811 |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_676b9aaf219f4766bf20cef7a57f2bc8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_676b9aaf219f4766bf20cef7a57f2bc8</doaj_id><sourcerecordid>oai_doaj_org_article_676b9aaf219f4766bf20cef7a57f2bc8</sourcerecordid><originalsourceid>FETCH-LOGICAL-d260t-9041b89a49ba3ebe754934c026d2b1c64627eec3b6e6c0e661d34281c39a1a1c3</originalsourceid><addsrcrecordid>eNotjttqwzAQREWh0JD2H_QDdiXZka2-taGX0ISU3uibWUkrR8GxjaQW8vd1L_NyltlldgihnOVc8VpdbuApF0yIfLu5yV_Mz8xqzk_IjNdcZdWi_DgjFzHu2aRCSVUtZmR8xxYTJD_09ADj6PuW-p7aAL5HS0eE1EFvI3VDoGmH1EDQ023AiBDMjg56jyb5L4xXFKZtRBrTpz1SF4YDfYTO91NmAEufsZ2-nJNTB13Ei3_Oydvd7evyIVtv71fL63VmhWQpU6zkulZQKg0Fapzaq6I0TEgrNDeylKJCNIWWKA1DKbktSlFzUyjgMGFOVn-5doB9MwZ_gHBsBvDNrzGEtoGQvOmwkZXUCsAJrlxZSamdYAZdBYvKCW3q4hvyhGuL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vegetation mapping in drained peatlands for the carbon research objectives: a case study from Kaliningrad Region</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Maxim Napreenko ; Aleksandr Danchenkov ; Tatiana Napreenko-Dorokhova ; Amalj Samerkhanova</creator><creatorcontrib>Maxim Napreenko ; Aleksandr Danchenkov ; Tatiana Napreenko-Dorokhova ; Amalj Samerkhanova</creatorcontrib><description>This article describes the vegetation mapping procedure adopted for the Rosyanka Carbon Supersite in Kaliningrad Province (Russia). To achieve the research objectives of the Carbon Supersite Programme which include the assessment of greenhouse gas (GHG) emissions, monitoring of ecosystem changes and modelling of the rewetting process, a detailed basemap of vegetation is required. The GIS-based vegetation map prepared includes over 100 polygon features assigned to 28 vegetation classification units comprising 6 vegetation types and 22 plant community categories, the latter approximating to associations. The mapped phytosociological units can be converted to ecology-based ones which can be used, in combination with additional data, to assign GHG flux values to the mapped units and thus to assess emission/sequestration rates at different peatland sites. Thus, the results of our investigation provide options for developing GHG flux estimation methodologies, e.g. GEST approach or ‘vegetation - water level proxy’ approach. We also outline possibilities for further applications of the vegetation map in relation to carbon supersite purposes. The fine-scale geobotanical map provides high-resolution cartographic material that can be correlated to land cover classes in other types of vegetation cover maps that may be required for research relating to peatland restoration, and the mapped phytosociological units may serve as a basis for increasing resolution to reveal further detail of the spatial heterogeneity of the vegetation cover.</description><identifier>EISSN: 1819-754X</identifier><identifier>DOI: 10.19189/MaP.2022.OMB.Sc.2020811</identifier><language>eng</language><publisher>International Mire Conservation Group and International Peatland Society</publisher><subject>carbon supersite ; gest ; ghg flux ; remote sensing ; spatial heterogeneity ; vegetation class</subject><ispartof>Mires and peat, 2023-01, Vol.29 (19), p.1-25</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1710-3757 ; 0000-0002-0889-7276 ; 0000-0002-4883-3250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maxim Napreenko</creatorcontrib><creatorcontrib>Aleksandr Danchenkov</creatorcontrib><creatorcontrib>Tatiana Napreenko-Dorokhova</creatorcontrib><creatorcontrib>Amalj Samerkhanova</creatorcontrib><title>Vegetation mapping in drained peatlands for the carbon research objectives: a case study from Kaliningrad Region</title><title>Mires and peat</title><description>This article describes the vegetation mapping procedure adopted for the Rosyanka Carbon Supersite in Kaliningrad Province (Russia). To achieve the research objectives of the Carbon Supersite Programme which include the assessment of greenhouse gas (GHG) emissions, monitoring of ecosystem changes and modelling of the rewetting process, a detailed basemap of vegetation is required. The GIS-based vegetation map prepared includes over 100 polygon features assigned to 28 vegetation classification units comprising 6 vegetation types and 22 plant community categories, the latter approximating to associations. The mapped phytosociological units can be converted to ecology-based ones which can be used, in combination with additional data, to assign GHG flux values to the mapped units and thus to assess emission/sequestration rates at different peatland sites. Thus, the results of our investigation provide options for developing GHG flux estimation methodologies, e.g. GEST approach or ‘vegetation - water level proxy’ approach. We also outline possibilities for further applications of the vegetation map in relation to carbon supersite purposes. The fine-scale geobotanical map provides high-resolution cartographic material that can be correlated to land cover classes in other types of vegetation cover maps that may be required for research relating to peatland restoration, and the mapped phytosociological units may serve as a basis for increasing resolution to reveal further detail of the spatial heterogeneity of the vegetation cover.</description><subject>carbon supersite</subject><subject>gest</subject><subject>ghg flux</subject><subject>remote sensing</subject><subject>spatial heterogeneity</subject><subject>vegetation class</subject><issn>1819-754X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotjttqwzAQREWh0JD2H_QDdiXZka2-taGX0ISU3uibWUkrR8GxjaQW8vd1L_NyltlldgihnOVc8VpdbuApF0yIfLu5yV_Mz8xqzk_IjNdcZdWi_DgjFzHu2aRCSVUtZmR8xxYTJD_09ADj6PuW-p7aAL5HS0eE1EFvI3VDoGmH1EDQ023AiBDMjg56jyb5L4xXFKZtRBrTpz1SF4YDfYTO91NmAEufsZ2-nJNTB13Ei3_Oydvd7evyIVtv71fL63VmhWQpU6zkulZQKg0Fapzaq6I0TEgrNDeylKJCNIWWKA1DKbktSlFzUyjgMGFOVn-5doB9MwZ_gHBsBvDNrzGEtoGQvOmwkZXUCsAJrlxZSamdYAZdBYvKCW3q4hvyhGuL</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Maxim Napreenko</creator><creator>Aleksandr Danchenkov</creator><creator>Tatiana Napreenko-Dorokhova</creator><creator>Amalj Samerkhanova</creator><general>International Mire Conservation Group and International Peatland Society</general><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1710-3757</orcidid><orcidid>https://orcid.org/0000-0002-0889-7276</orcidid><orcidid>https://orcid.org/0000-0002-4883-3250</orcidid></search><sort><creationdate>20230101</creationdate><title>Vegetation mapping in drained peatlands for the carbon research objectives: a case study from Kaliningrad Region</title><author>Maxim Napreenko ; Aleksandr Danchenkov ; Tatiana Napreenko-Dorokhova ; Amalj Samerkhanova</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d260t-9041b89a49ba3ebe754934c026d2b1c64627eec3b6e6c0e661d34281c39a1a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon supersite</topic><topic>gest</topic><topic>ghg flux</topic><topic>remote sensing</topic><topic>spatial heterogeneity</topic><topic>vegetation class</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maxim Napreenko</creatorcontrib><creatorcontrib>Aleksandr Danchenkov</creatorcontrib><creatorcontrib>Tatiana Napreenko-Dorokhova</creatorcontrib><creatorcontrib>Amalj Samerkhanova</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mires and peat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maxim Napreenko</au><au>Aleksandr Danchenkov</au><au>Tatiana Napreenko-Dorokhova</au><au>Amalj Samerkhanova</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vegetation mapping in drained peatlands for the carbon research objectives: a case study from Kaliningrad Region</atitle><jtitle>Mires and peat</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>29</volume><issue>19</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><eissn>1819-754X</eissn><abstract>This article describes the vegetation mapping procedure adopted for the Rosyanka Carbon Supersite in Kaliningrad Province (Russia). To achieve the research objectives of the Carbon Supersite Programme which include the assessment of greenhouse gas (GHG) emissions, monitoring of ecosystem changes and modelling of the rewetting process, a detailed basemap of vegetation is required. The GIS-based vegetation map prepared includes over 100 polygon features assigned to 28 vegetation classification units comprising 6 vegetation types and 22 plant community categories, the latter approximating to associations. The mapped phytosociological units can be converted to ecology-based ones which can be used, in combination with additional data, to assign GHG flux values to the mapped units and thus to assess emission/sequestration rates at different peatland sites. Thus, the results of our investigation provide options for developing GHG flux estimation methodologies, e.g. GEST approach or ‘vegetation - water level proxy’ approach. We also outline possibilities for further applications of the vegetation map in relation to carbon supersite purposes. The fine-scale geobotanical map provides high-resolution cartographic material that can be correlated to land cover classes in other types of vegetation cover maps that may be required for research relating to peatland restoration, and the mapped phytosociological units may serve as a basis for increasing resolution to reveal further detail of the spatial heterogeneity of the vegetation cover.</abstract><pub>International Mire Conservation Group and International Peatland Society</pub><doi>10.19189/MaP.2022.OMB.Sc.2020811</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1710-3757</orcidid><orcidid>https://orcid.org/0000-0002-0889-7276</orcidid><orcidid>https://orcid.org/0000-0002-4883-3250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1819-754X |
ispartof | Mires and peat, 2023-01, Vol.29 (19), p.1-25 |
issn | 1819-754X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_676b9aaf219f4766bf20cef7a57f2bc8 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | carbon supersite gest ghg flux remote sensing spatial heterogeneity vegetation class |
title | Vegetation mapping in drained peatlands for the carbon research objectives: a case study from Kaliningrad Region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vegetation%20mapping%20in%20drained%20peatlands%20for%20the%20carbon%20research%20objectives:%20a%20case%20study%20from%20Kaliningrad%20Region&rft.jtitle=Mires%20and%20peat&rft.au=Maxim%20Napreenko&rft.date=2023-01-01&rft.volume=29&rft.issue=19&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.eissn=1819-754X&rft_id=info:doi/10.19189/MaP.2022.OMB.Sc.2020811&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_676b9aaf219f4766bf20cef7a57f2bc8%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d260t-9041b89a49ba3ebe754934c026d2b1c64627eec3b6e6c0e661d34281c39a1a1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |