Loading…
Modification of radiation-induced murine thymic lymphoma incidence by curcumin
Introduction: Curcumin is a known antioxidant, preventing radiation damage including carcinogenesis. However, concentration and feeding schedule of curcumin in modification of radiation induced thymic lymphoma incidence in vivo model has not been studied. Materials and Methods: We report here modifi...
Saved in:
Published in: | Journal of radiation and cancer research 2017-01, Vol.8 (3), p.141-146 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction: Curcumin is a known antioxidant, preventing radiation damage including carcinogenesis. However, concentration and feeding schedule of curcumin in modification of radiation induced thymic lymphoma incidence in vivo model has not been studied. Materials and Methods: We report here modification of incidence of γ-radiation-induced thymic lymphoma in mice fed with different doses of curcumin (0.05 to 1*) in diet. Results: Female Swiss mice (6-8 weeks) fed with normal diet and exposed to 3 Gy whole body60Co γ-irradiation (WBI) showed 85 * incidence of thymic lymphoma (TL) at 120 days post-irradiation. A concentration of 1 * curcumin was found the most effective in TL incidence prevention than other fed concentrations. The TL incidence was remarkably reduced when curcumin was fed to the mice before than after the radiation exposure. The incidence of TL was reduced to 63* in mice fed with 1* curcumin in diet for 3 weeks after exposure to WBI. On the other hand, when animals were fed with same concentration of curcumin for 2 weeks and 3 weeks before WBI, the TL incidence was reduced to 55* and 35*, respectively. Curcumin feeding resulted in significant prevention in micronucleus formation in the bone marrow, which was corroborated with inhibition in DNA damage quantified by comet assay. Moreover, significant prevention in DNA damage was also observed in the peripheral blood cells in curcumin fed and irradiated mice, which however, was not prominent in thymus. Curcumin was able to prevent apoptotic death in thymus and bone marrow 4 h after irradiation, which however, got attenuated at longer post-irradiation period (24 h). Conclusion: These results suggest modification of TL incidence by curcumin in irradiated mice involving DNA damage and apoptotic death mechanisms. |
---|---|
ISSN: | 2588-9273 2468-9203 |
DOI: | 10.4103/jrcr.jrcr_32_17 |