Loading…

An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau

Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow Rive...

Full description

Saved in:
Bibliographic Details
Published in:Earth system science data 2024-03, Vol.16 (3), p.1425-1446
Main Authors: Şerban, Raul-David, Jin, Huijun, Şerban, Mihaela, Bertoldi, Giacomo, Luo, Dongliang, Wang, Qingfeng, Ma, Qiang, He, Ruixia, Jin, Xiaoying, Li, Xinze, Tang, Jianjun, Wang, Hongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3
container_end_page 1446
container_issue 3
container_start_page 1425
container_title Earth system science data
container_volume 16
creator Şerban, Raul-David
Jin, Huijun
Şerban, Mihaela
Bertoldi, Giacomo
Luo, Dongliang
Wang, Qingfeng
Ma, Qiang
He, Ruixia
Jin, Xiaoying
Li, Xinze
Tang, Jianjun
Wang, Hongwei
description Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow River (HAYR), a representative area of high-plateau permafrost on the northeastern Qinghai–Tibet Plateau (QTP). GST was measured every 3 h using 72 iButton temperature loggers (DS1922L) at 39 sites from 2019 to 2020. At each site, GST was recorded in two plots at distances from 2 to 16 m under similar and different land-cover conditions (steppe, meadow, swamp meadow, and bare ground). These sensors proved their reliability in harsh environments because there were only 165 biased measurements from a total of 210 816. A high significant correlation (>0.96, p
doi_str_mv 10.5194/essd-16-1425-2024
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_67b3836841c54494b5808bbca2d91a74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_67b3836841c54494b5808bbca2d91a74</doaj_id><sourcerecordid>2957129866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3</originalsourceid><addsrcrecordid>eNpNUV1rFTEUDGLBetsf0LeAz6t7Nh-7eSxFbaGgQn0OJ5uT271uk2uSrfRN8Cf4D_0l7vWK-DSHYZg5zDB2Ae1rBUa-oVJ8A7oB2ammazv5jJ3CoHUjFOjn_90v2MtSdm2rJfTqlP24jDy5QvkR65QizjxS_ZbyF54C3-a0RM_LkgOOxCs97CljXTLxlafM_RQCZYqVzxh9M6bHlaxPeyo8RV7viceUV8BSKUf-aYrbe5x-ff95Nzmq_OOMlXA5YycB50Lnf3HDPr97e3d13dx-eH9zdXnbjELI2igMEjrsjPO9FODGMKIPBL2XzivtOqNCMP1KkOwdtEZ4IY0edEegQXuxYTdHX59wZ_d5esD8ZBNO9g-R8tZirtM4k9W9E4PQg4RRSWmkU0M7ODdi5w3gGr9hr45e-5y-LlSq3aUlr_0Vu_7RQ2fWwlcVHFVjTqVkCv9SobWH3exhNwvaHnazh93Eb4GLj2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957129866</pqid></control><display><type>article</type><title>An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau</title><source>Publicly Available Content (ProQuest)</source><source>EZB Electronic Journals Library</source><creator>Şerban, Raul-David ; Jin, Huijun ; Şerban, Mihaela ; Bertoldi, Giacomo ; Luo, Dongliang ; Wang, Qingfeng ; Ma, Qiang ; He, Ruixia ; Jin, Xiaoying ; Li, Xinze ; Tang, Jianjun ; Wang, Hongwei</creator><creatorcontrib>Şerban, Raul-David ; Jin, Huijun ; Şerban, Mihaela ; Bertoldi, Giacomo ; Luo, Dongliang ; Wang, Qingfeng ; Ma, Qiang ; He, Ruixia ; Jin, Xiaoying ; Li, Xinze ; Tang, Jianjun ; Wang, Hongwei</creatorcontrib><description>Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow River (HAYR), a representative area of high-plateau permafrost on the northeastern Qinghai–Tibet Plateau (QTP). GST was measured every 3 h using 72 iButton temperature loggers (DS1922L) at 39 sites from 2019 to 2020. At each site, GST was recorded in two plots at distances from 2 to 16 m under similar and different land-cover conditions (steppe, meadow, swamp meadow, and bare ground). These sensors proved their reliability in harsh environments because there were only 165 biased measurements from a total of 210 816. A high significant correlation (&gt;0.96, p&lt;0.001) was observed between plots, with a mean absolute error (MAE) of 0.2 to 1.2 °C. The daily intra-plot differences in GST were mainly &lt;2 °C for sites with similar land cover in both plots and &gt;2 °C when GST of bare ground was compared to that of sites with vegetation. From autumn to spring, the differences in GST could increase to 4–5 °C for up to 15 d. The values of the frost number (FN) were quite similar between the plots with differences in FN &lt;0.05 for most of the sites. This dataset complements the sparse observations of GST on the QTP and helps to identify the permafrost distribution and degradation at high resolution as well as to validate and calibrate the permafrost distribution models. The datasets are openly available in the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.272945, Şerban and Jin, 2022).</description><identifier>ISSN: 1866-3516</identifier><identifier>ISSN: 1866-3508</identifier><identifier>EISSN: 1866-3516</identifier><identifier>DOI: 10.5194/essd-16-1425-2024</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Atmospheric models ; Climate change ; Datasets ; Distribution ; Harsh environments ; Headwaters ; Highway construction ; Land cover ; Meadows ; Permafrost ; Permafrost distribution ; Plateaus ; Rivers ; Steppes ; Surface temperature ; Swamps ; Vegetation ; Water conservation</subject><ispartof>Earth system science data, 2024-03, Vol.16 (3), p.1425-1446</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3</cites><orcidid>0000-0001-5844-3638 ; 0000-0002-7477-1743 ; 0000-0003-0397-8103 ; 0000-0003-2924-2735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2957129866/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2957129866?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Şerban, Raul-David</creatorcontrib><creatorcontrib>Jin, Huijun</creatorcontrib><creatorcontrib>Şerban, Mihaela</creatorcontrib><creatorcontrib>Bertoldi, Giacomo</creatorcontrib><creatorcontrib>Luo, Dongliang</creatorcontrib><creatorcontrib>Wang, Qingfeng</creatorcontrib><creatorcontrib>Ma, Qiang</creatorcontrib><creatorcontrib>He, Ruixia</creatorcontrib><creatorcontrib>Jin, Xiaoying</creatorcontrib><creatorcontrib>Li, Xinze</creatorcontrib><creatorcontrib>Tang, Jianjun</creatorcontrib><creatorcontrib>Wang, Hongwei</creatorcontrib><title>An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau</title><title>Earth system science data</title><description>Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow River (HAYR), a representative area of high-plateau permafrost on the northeastern Qinghai–Tibet Plateau (QTP). GST was measured every 3 h using 72 iButton temperature loggers (DS1922L) at 39 sites from 2019 to 2020. At each site, GST was recorded in two plots at distances from 2 to 16 m under similar and different land-cover conditions (steppe, meadow, swamp meadow, and bare ground). These sensors proved their reliability in harsh environments because there were only 165 biased measurements from a total of 210 816. A high significant correlation (&gt;0.96, p&lt;0.001) was observed between plots, with a mean absolute error (MAE) of 0.2 to 1.2 °C. The daily intra-plot differences in GST were mainly &lt;2 °C for sites with similar land cover in both plots and &gt;2 °C when GST of bare ground was compared to that of sites with vegetation. From autumn to spring, the differences in GST could increase to 4–5 °C for up to 15 d. The values of the frost number (FN) were quite similar between the plots with differences in FN &lt;0.05 for most of the sites. This dataset complements the sparse observations of GST on the QTP and helps to identify the permafrost distribution and degradation at high resolution as well as to validate and calibrate the permafrost distribution models. The datasets are openly available in the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.272945, Şerban and Jin, 2022).</description><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Datasets</subject><subject>Distribution</subject><subject>Harsh environments</subject><subject>Headwaters</subject><subject>Highway construction</subject><subject>Land cover</subject><subject>Meadows</subject><subject>Permafrost</subject><subject>Permafrost distribution</subject><subject>Plateaus</subject><subject>Rivers</subject><subject>Steppes</subject><subject>Surface temperature</subject><subject>Swamps</subject><subject>Vegetation</subject><subject>Water conservation</subject><issn>1866-3516</issn><issn>1866-3508</issn><issn>1866-3516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rFTEUDGLBetsf0LeAz6t7Nh-7eSxFbaGgQn0OJ5uT271uk2uSrfRN8Cf4D_0l7vWK-DSHYZg5zDB2Ae1rBUa-oVJ8A7oB2ammazv5jJ3CoHUjFOjn_90v2MtSdm2rJfTqlP24jDy5QvkR65QizjxS_ZbyF54C3-a0RM_LkgOOxCs97CljXTLxlafM_RQCZYqVzxh9M6bHlaxPeyo8RV7viceUV8BSKUf-aYrbe5x-ff95Nzmq_OOMlXA5YycB50Lnf3HDPr97e3d13dx-eH9zdXnbjELI2igMEjrsjPO9FODGMKIPBL2XzivtOqNCMP1KkOwdtEZ4IY0edEegQXuxYTdHX59wZ_d5esD8ZBNO9g-R8tZirtM4k9W9E4PQg4RRSWmkU0M7ODdi5w3gGr9hr45e-5y-LlSq3aUlr_0Vu_7RQ2fWwlcVHFVjTqVkCv9SobWH3exhNwvaHnazh93Eb4GLj2Q</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Şerban, Raul-David</creator><creator>Jin, Huijun</creator><creator>Şerban, Mihaela</creator><creator>Bertoldi, Giacomo</creator><creator>Luo, Dongliang</creator><creator>Wang, Qingfeng</creator><creator>Ma, Qiang</creator><creator>He, Ruixia</creator><creator>Jin, Xiaoying</creator><creator>Li, Xinze</creator><creator>Tang, Jianjun</creator><creator>Wang, Hongwei</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5844-3638</orcidid><orcidid>https://orcid.org/0000-0002-7477-1743</orcidid><orcidid>https://orcid.org/0000-0003-0397-8103</orcidid><orcidid>https://orcid.org/0000-0003-2924-2735</orcidid></search><sort><creationdate>20240315</creationdate><title>An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau</title><author>Şerban, Raul-David ; Jin, Huijun ; Şerban, Mihaela ; Bertoldi, Giacomo ; Luo, Dongliang ; Wang, Qingfeng ; Ma, Qiang ; He, Ruixia ; Jin, Xiaoying ; Li, Xinze ; Tang, Jianjun ; Wang, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Datasets</topic><topic>Distribution</topic><topic>Harsh environments</topic><topic>Headwaters</topic><topic>Highway construction</topic><topic>Land cover</topic><topic>Meadows</topic><topic>Permafrost</topic><topic>Permafrost distribution</topic><topic>Plateaus</topic><topic>Rivers</topic><topic>Steppes</topic><topic>Surface temperature</topic><topic>Swamps</topic><topic>Vegetation</topic><topic>Water conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Şerban, Raul-David</creatorcontrib><creatorcontrib>Jin, Huijun</creatorcontrib><creatorcontrib>Şerban, Mihaela</creatorcontrib><creatorcontrib>Bertoldi, Giacomo</creatorcontrib><creatorcontrib>Luo, Dongliang</creatorcontrib><creatorcontrib>Wang, Qingfeng</creatorcontrib><creatorcontrib>Ma, Qiang</creatorcontrib><creatorcontrib>He, Ruixia</creatorcontrib><creatorcontrib>Jin, Xiaoying</creatorcontrib><creatorcontrib>Li, Xinze</creatorcontrib><creatorcontrib>Tang, Jianjun</creatorcontrib><creatorcontrib>Wang, Hongwei</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system science data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Şerban, Raul-David</au><au>Jin, Huijun</au><au>Şerban, Mihaela</au><au>Bertoldi, Giacomo</au><au>Luo, Dongliang</au><au>Wang, Qingfeng</au><au>Ma, Qiang</au><au>He, Ruixia</au><au>Jin, Xiaoying</au><au>Li, Xinze</au><au>Tang, Jianjun</au><au>Wang, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau</atitle><jtitle>Earth system science data</jtitle><date>2024-03-15</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>1425</spage><epage>1446</epage><pages>1425-1446</pages><issn>1866-3516</issn><issn>1866-3508</issn><eissn>1866-3516</eissn><abstract>Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow River (HAYR), a representative area of high-plateau permafrost on the northeastern Qinghai–Tibet Plateau (QTP). GST was measured every 3 h using 72 iButton temperature loggers (DS1922L) at 39 sites from 2019 to 2020. At each site, GST was recorded in two plots at distances from 2 to 16 m under similar and different land-cover conditions (steppe, meadow, swamp meadow, and bare ground). These sensors proved their reliability in harsh environments because there were only 165 biased measurements from a total of 210 816. A high significant correlation (&gt;0.96, p&lt;0.001) was observed between plots, with a mean absolute error (MAE) of 0.2 to 1.2 °C. The daily intra-plot differences in GST were mainly &lt;2 °C for sites with similar land cover in both plots and &gt;2 °C when GST of bare ground was compared to that of sites with vegetation. From autumn to spring, the differences in GST could increase to 4–5 °C for up to 15 d. The values of the frost number (FN) were quite similar between the plots with differences in FN &lt;0.05 for most of the sites. This dataset complements the sparse observations of GST on the QTP and helps to identify the permafrost distribution and degradation at high resolution as well as to validate and calibrate the permafrost distribution models. The datasets are openly available in the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.272945, Şerban and Jin, 2022).</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/essd-16-1425-2024</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5844-3638</orcidid><orcidid>https://orcid.org/0000-0002-7477-1743</orcidid><orcidid>https://orcid.org/0000-0003-0397-8103</orcidid><orcidid>https://orcid.org/0000-0003-2924-2735</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1866-3516
ispartof Earth system science data, 2024-03, Vol.16 (3), p.1425-1446
issn 1866-3516
1866-3508
1866-3516
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_67b3836841c54494b5808bbca2d91a74
source Publicly Available Content (ProQuest); EZB Electronic Journals Library
subjects Atmospheric models
Climate change
Datasets
Distribution
Harsh environments
Headwaters
Highway construction
Land cover
Meadows
Permafrost
Permafrost distribution
Plateaus
Rivers
Steppes
Surface temperature
Swamps
Vegetation
Water conservation
title An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20observational%20network%20of%20ground%20surface%20temperature%20under%20different%20land-cover%20types%20on%20the%20northeastern%20Qinghai%E2%80%93Tibet%20Plateau&rft.jtitle=Earth%20system%20science%20data&rft.au=%C5%9Eerban,%20Raul-David&rft.date=2024-03-15&rft.volume=16&rft.issue=3&rft.spage=1425&rft.epage=1446&rft.pages=1425-1446&rft.issn=1866-3516&rft.eissn=1866-3516&rft_id=info:doi/10.5194/essd-16-1425-2024&rft_dat=%3Cproquest_doaj_%3E2957129866%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2957129866&rft_id=info:pmid/&rfr_iscdi=true