Loading…
An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau
Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow Rive...
Saved in:
Published in: | Earth system science data 2024-03, Vol.16 (3), p.1425-1446 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3 |
container_end_page | 1446 |
container_issue | 3 |
container_start_page | 1425 |
container_title | Earth system science data |
container_volume | 16 |
creator | Şerban, Raul-David Jin, Huijun Şerban, Mihaela Bertoldi, Giacomo Luo, Dongliang Wang, Qingfeng Ma, Qiang He, Ruixia Jin, Xiaoying Li, Xinze Tang, Jianjun Wang, Hongwei |
description | Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow River (HAYR), a representative area of high-plateau permafrost on the northeastern Qinghai–Tibet Plateau (QTP). GST was measured every 3 h using 72 iButton temperature loggers (DS1922L) at 39 sites from 2019 to 2020. At each site, GST was recorded in two plots at distances from 2 to 16 m under similar and different land-cover conditions (steppe, meadow, swamp meadow, and bare ground). These sensors proved their reliability in harsh environments because there were only 165 biased measurements from a total of 210 816. A high significant correlation (>0.96, p |
doi_str_mv | 10.5194/essd-16-1425-2024 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_67b3836841c54494b5808bbca2d91a74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_67b3836841c54494b5808bbca2d91a74</doaj_id><sourcerecordid>2957129866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3</originalsourceid><addsrcrecordid>eNpNUV1rFTEUDGLBetsf0LeAz6t7Nh-7eSxFbaGgQn0OJ5uT271uk2uSrfRN8Cf4D_0l7vWK-DSHYZg5zDB2Ae1rBUa-oVJ8A7oB2ammazv5jJ3CoHUjFOjn_90v2MtSdm2rJfTqlP24jDy5QvkR65QizjxS_ZbyF54C3-a0RM_LkgOOxCs97CljXTLxlafM_RQCZYqVzxh9M6bHlaxPeyo8RV7viceUV8BSKUf-aYrbe5x-ff95Nzmq_OOMlXA5YycB50Lnf3HDPr97e3d13dx-eH9zdXnbjELI2igMEjrsjPO9FODGMKIPBL2XzivtOqNCMP1KkOwdtEZ4IY0edEegQXuxYTdHX59wZ_d5esD8ZBNO9g-R8tZirtM4k9W9E4PQg4RRSWmkU0M7ODdi5w3gGr9hr45e-5y-LlSq3aUlr_0Vu_7RQ2fWwlcVHFVjTqVkCv9SobWH3exhNwvaHnazh93Eb4GLj2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957129866</pqid></control><display><type>article</type><title>An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau</title><source>Publicly Available Content (ProQuest)</source><source>EZB Electronic Journals Library</source><creator>Şerban, Raul-David ; Jin, Huijun ; Şerban, Mihaela ; Bertoldi, Giacomo ; Luo, Dongliang ; Wang, Qingfeng ; Ma, Qiang ; He, Ruixia ; Jin, Xiaoying ; Li, Xinze ; Tang, Jianjun ; Wang, Hongwei</creator><creatorcontrib>Şerban, Raul-David ; Jin, Huijun ; Şerban, Mihaela ; Bertoldi, Giacomo ; Luo, Dongliang ; Wang, Qingfeng ; Ma, Qiang ; He, Ruixia ; Jin, Xiaoying ; Li, Xinze ; Tang, Jianjun ; Wang, Hongwei</creatorcontrib><description>Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow River (HAYR), a representative area of high-plateau permafrost on the northeastern Qinghai–Tibet Plateau (QTP). GST was measured every 3 h using 72 iButton temperature loggers (DS1922L) at 39 sites from 2019 to 2020. At each site, GST was recorded in two plots at distances from 2 to 16 m under similar and different land-cover conditions (steppe, meadow, swamp meadow, and bare ground). These sensors proved their reliability in harsh environments because there were only 165 biased measurements from a total of 210 816. A high significant correlation (>0.96, p<0.001) was observed between plots, with a mean absolute error (MAE) of 0.2 to 1.2 °C. The daily intra-plot differences in GST were mainly <2 °C for sites with similar land cover in both plots and >2 °C when GST of bare ground was compared to that of sites with vegetation. From autumn to spring, the differences in GST could increase to 4–5 °C for up to 15 d. The values of the frost number (FN) were quite similar between the plots with differences in FN <0.05 for most of the sites. This dataset complements the sparse observations of GST on the QTP and helps to identify the permafrost distribution and degradation at high resolution as well as to validate and calibrate the permafrost distribution models. The datasets are openly available in the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.272945, Şerban and Jin, 2022).</description><identifier>ISSN: 1866-3516</identifier><identifier>ISSN: 1866-3508</identifier><identifier>EISSN: 1866-3516</identifier><identifier>DOI: 10.5194/essd-16-1425-2024</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Atmospheric models ; Climate change ; Datasets ; Distribution ; Harsh environments ; Headwaters ; Highway construction ; Land cover ; Meadows ; Permafrost ; Permafrost distribution ; Plateaus ; Rivers ; Steppes ; Surface temperature ; Swamps ; Vegetation ; Water conservation</subject><ispartof>Earth system science data, 2024-03, Vol.16 (3), p.1425-1446</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3</cites><orcidid>0000-0001-5844-3638 ; 0000-0002-7477-1743 ; 0000-0003-0397-8103 ; 0000-0003-2924-2735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2957129866/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2957129866?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Şerban, Raul-David</creatorcontrib><creatorcontrib>Jin, Huijun</creatorcontrib><creatorcontrib>Şerban, Mihaela</creatorcontrib><creatorcontrib>Bertoldi, Giacomo</creatorcontrib><creatorcontrib>Luo, Dongliang</creatorcontrib><creatorcontrib>Wang, Qingfeng</creatorcontrib><creatorcontrib>Ma, Qiang</creatorcontrib><creatorcontrib>He, Ruixia</creatorcontrib><creatorcontrib>Jin, Xiaoying</creatorcontrib><creatorcontrib>Li, Xinze</creatorcontrib><creatorcontrib>Tang, Jianjun</creatorcontrib><creatorcontrib>Wang, Hongwei</creatorcontrib><title>An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau</title><title>Earth system science data</title><description>Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow River (HAYR), a representative area of high-plateau permafrost on the northeastern Qinghai–Tibet Plateau (QTP). GST was measured every 3 h using 72 iButton temperature loggers (DS1922L) at 39 sites from 2019 to 2020. At each site, GST was recorded in two plots at distances from 2 to 16 m under similar and different land-cover conditions (steppe, meadow, swamp meadow, and bare ground). These sensors proved their reliability in harsh environments because there were only 165 biased measurements from a total of 210 816. A high significant correlation (>0.96, p<0.001) was observed between plots, with a mean absolute error (MAE) of 0.2 to 1.2 °C. The daily intra-plot differences in GST were mainly <2 °C for sites with similar land cover in both plots and >2 °C when GST of bare ground was compared to that of sites with vegetation. From autumn to spring, the differences in GST could increase to 4–5 °C for up to 15 d. The values of the frost number (FN) were quite similar between the plots with differences in FN <0.05 for most of the sites. This dataset complements the sparse observations of GST on the QTP and helps to identify the permafrost distribution and degradation at high resolution as well as to validate and calibrate the permafrost distribution models. The datasets are openly available in the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.272945, Şerban and Jin, 2022).</description><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Datasets</subject><subject>Distribution</subject><subject>Harsh environments</subject><subject>Headwaters</subject><subject>Highway construction</subject><subject>Land cover</subject><subject>Meadows</subject><subject>Permafrost</subject><subject>Permafrost distribution</subject><subject>Plateaus</subject><subject>Rivers</subject><subject>Steppes</subject><subject>Surface temperature</subject><subject>Swamps</subject><subject>Vegetation</subject><subject>Water conservation</subject><issn>1866-3516</issn><issn>1866-3508</issn><issn>1866-3516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rFTEUDGLBetsf0LeAz6t7Nh-7eSxFbaGgQn0OJ5uT271uk2uSrfRN8Cf4D_0l7vWK-DSHYZg5zDB2Ae1rBUa-oVJ8A7oB2ammazv5jJ3CoHUjFOjn_90v2MtSdm2rJfTqlP24jDy5QvkR65QizjxS_ZbyF54C3-a0RM_LkgOOxCs97CljXTLxlafM_RQCZYqVzxh9M6bHlaxPeyo8RV7viceUV8BSKUf-aYrbe5x-ff95Nzmq_OOMlXA5YycB50Lnf3HDPr97e3d13dx-eH9zdXnbjELI2igMEjrsjPO9FODGMKIPBL2XzivtOqNCMP1KkOwdtEZ4IY0edEegQXuxYTdHX59wZ_d5esD8ZBNO9g-R8tZirtM4k9W9E4PQg4RRSWmkU0M7ODdi5w3gGr9hr45e-5y-LlSq3aUlr_0Vu_7RQ2fWwlcVHFVjTqVkCv9SobWH3exhNwvaHnazh93Eb4GLj2Q</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Şerban, Raul-David</creator><creator>Jin, Huijun</creator><creator>Şerban, Mihaela</creator><creator>Bertoldi, Giacomo</creator><creator>Luo, Dongliang</creator><creator>Wang, Qingfeng</creator><creator>Ma, Qiang</creator><creator>He, Ruixia</creator><creator>Jin, Xiaoying</creator><creator>Li, Xinze</creator><creator>Tang, Jianjun</creator><creator>Wang, Hongwei</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5844-3638</orcidid><orcidid>https://orcid.org/0000-0002-7477-1743</orcidid><orcidid>https://orcid.org/0000-0003-0397-8103</orcidid><orcidid>https://orcid.org/0000-0003-2924-2735</orcidid></search><sort><creationdate>20240315</creationdate><title>An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau</title><author>Şerban, Raul-David ; Jin, Huijun ; Şerban, Mihaela ; Bertoldi, Giacomo ; Luo, Dongliang ; Wang, Qingfeng ; Ma, Qiang ; He, Ruixia ; Jin, Xiaoying ; Li, Xinze ; Tang, Jianjun ; Wang, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Datasets</topic><topic>Distribution</topic><topic>Harsh environments</topic><topic>Headwaters</topic><topic>Highway construction</topic><topic>Land cover</topic><topic>Meadows</topic><topic>Permafrost</topic><topic>Permafrost distribution</topic><topic>Plateaus</topic><topic>Rivers</topic><topic>Steppes</topic><topic>Surface temperature</topic><topic>Swamps</topic><topic>Vegetation</topic><topic>Water conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Şerban, Raul-David</creatorcontrib><creatorcontrib>Jin, Huijun</creatorcontrib><creatorcontrib>Şerban, Mihaela</creatorcontrib><creatorcontrib>Bertoldi, Giacomo</creatorcontrib><creatorcontrib>Luo, Dongliang</creatorcontrib><creatorcontrib>Wang, Qingfeng</creatorcontrib><creatorcontrib>Ma, Qiang</creatorcontrib><creatorcontrib>He, Ruixia</creatorcontrib><creatorcontrib>Jin, Xiaoying</creatorcontrib><creatorcontrib>Li, Xinze</creatorcontrib><creatorcontrib>Tang, Jianjun</creatorcontrib><creatorcontrib>Wang, Hongwei</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth system science data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Şerban, Raul-David</au><au>Jin, Huijun</au><au>Şerban, Mihaela</au><au>Bertoldi, Giacomo</au><au>Luo, Dongliang</au><au>Wang, Qingfeng</au><au>Ma, Qiang</au><au>He, Ruixia</au><au>Jin, Xiaoying</au><au>Li, Xinze</au><au>Tang, Jianjun</au><au>Wang, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau</atitle><jtitle>Earth system science data</jtitle><date>2024-03-15</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>1425</spage><epage>1446</epage><pages>1425-1446</pages><issn>1866-3516</issn><issn>1866-3508</issn><eissn>1866-3516</eissn><abstract>Ground surface temperature (GST), measured at approximately 5 cm in depth, is a key controlling parameter for subsurface biophysical processes at the land–atmosphere boundary. This work presents a valuable dataset of GST observations at various spatial scales in the Headwater Area of the Yellow River (HAYR), a representative area of high-plateau permafrost on the northeastern Qinghai–Tibet Plateau (QTP). GST was measured every 3 h using 72 iButton temperature loggers (DS1922L) at 39 sites from 2019 to 2020. At each site, GST was recorded in two plots at distances from 2 to 16 m under similar and different land-cover conditions (steppe, meadow, swamp meadow, and bare ground). These sensors proved their reliability in harsh environments because there were only 165 biased measurements from a total of 210 816. A high significant correlation (>0.96, p<0.001) was observed between plots, with a mean absolute error (MAE) of 0.2 to 1.2 °C. The daily intra-plot differences in GST were mainly <2 °C for sites with similar land cover in both plots and >2 °C when GST of bare ground was compared to that of sites with vegetation. From autumn to spring, the differences in GST could increase to 4–5 °C for up to 15 d. The values of the frost number (FN) were quite similar between the plots with differences in FN <0.05 for most of the sites. This dataset complements the sparse observations of GST on the QTP and helps to identify the permafrost distribution and degradation at high resolution as well as to validate and calibrate the permafrost distribution models. The datasets are openly available in the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.272945, Şerban and Jin, 2022).</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/essd-16-1425-2024</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5844-3638</orcidid><orcidid>https://orcid.org/0000-0002-7477-1743</orcidid><orcidid>https://orcid.org/0000-0003-0397-8103</orcidid><orcidid>https://orcid.org/0000-0003-2924-2735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-3516 |
ispartof | Earth system science data, 2024-03, Vol.16 (3), p.1425-1446 |
issn | 1866-3516 1866-3508 1866-3516 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_67b3836841c54494b5808bbca2d91a74 |
source | Publicly Available Content (ProQuest); EZB Electronic Journals Library |
subjects | Atmospheric models Climate change Datasets Distribution Harsh environments Headwaters Highway construction Land cover Meadows Permafrost Permafrost distribution Plateaus Rivers Steppes Surface temperature Swamps Vegetation Water conservation |
title | An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20observational%20network%20of%20ground%20surface%20temperature%20under%20different%20land-cover%20types%20on%20the%20northeastern%20Qinghai%E2%80%93Tibet%20Plateau&rft.jtitle=Earth%20system%20science%20data&rft.au=%C5%9Eerban,%20Raul-David&rft.date=2024-03-15&rft.volume=16&rft.issue=3&rft.spage=1425&rft.epage=1446&rft.pages=1425-1446&rft.issn=1866-3516&rft.eissn=1866-3516&rft_id=info:doi/10.5194/essd-16-1425-2024&rft_dat=%3Cproquest_doaj_%3E2957129866%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-5af412a29bd7431bcfcadfe17d4bd56b295ff97e17e47b1093d3496862e1616d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2957129866&rft_id=info:pmid/&rfr_iscdi=true |