Loading…
Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting
Modeling and analysis of time series are important in applications including economics, engineering, environmental science and social science. Selecting the best time series model with accurate parameters in forecasting is a challenging objective for scientists and academic researchers. Hybrid model...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2021-11, Vol.23 (12), p.1601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-e158006ee39bb263968a8ac4f760a1743f4530c54a8819bf8adc9b959289c3753 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-e158006ee39bb263968a8ac4f760a1743f4530c54a8819bf8adc9b959289c3753 |
container_end_page | |
container_issue | 12 |
container_start_page | 1601 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 23 |
creator | Fang, Zheng Dowe, David L Peiris, Shelton Rosadi, Dedi |
description | Modeling and analysis of time series are important in applications including economics, engineering, environmental science and social science. Selecting the best time series model with accurate parameters in forecasting is a challenging objective for scientists and academic researchers. Hybrid models combining neural networks and traditional Autoregressive Moving Average (ARMA) models are being used to improve the accuracy of modeling and forecasting time series. Most of the existing time series models are selected by information-theoretic approaches, such as AIC, BIC, and HQ. This paper revisits a model selection technique based on Minimum Message Length (MML) and investigates its use in hybrid time series analysis. MML is a Bayesian information-theoretic approach and has been used in selecting the best ARMA model. We utilize the long short-term memory (LSTM) approach to construct a hybrid ARMA-LSTM model and show that MML performs better than AIC, BIC, and HQ in selecting the model-both in the traditional ARMA models (without LSTM) and with hybrid ARMA-LSTM models. These results held on simulated data and both real-world datasets that we considered.We also develop a simple MML ARIMA model. |
doi_str_mv | 10.3390/e23121601 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_680ae6d9cb2f4eed974d6c4be31fb76a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_680ae6d9cb2f4eed974d6c4be31fb76a</doaj_id><sourcerecordid>2612775169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e158006ee39bb263968a8ac4f760a1743f4530c54a8819bf8adc9b959289c3753</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoNYbF298A9IwBu92JqvySQ34lKsLewgaL0O-TgzzTIzqclMof--U7curVc55Dw8vMmL0DtKTjnX5DMwThmVhL5AJ5RovRackJdP5mP0upQdIYwv2Ct0zIUWlSb1CfraxDEO84AbKMV2gLcwdtM1jiO-uHM5Brz52WywHQPe_rpqcJMC9Pg8ZfC2THHs3qCj1vYF3j6eK_T7_NvV2cV6--P75dlmu_ZC6mkNtFKESACunWOSa6mssl60tSSW1oK3ouLEV8IqRbVrlQ1eO11pprTndcVX6HLvDcnuzE2Og813Jtlo_l6k3Bmbp-h7MFIRCzJo71grAIKuRZBeOOC0dbW0i-vL3nUzuwGCh3HKtn8mfb4Z47Xp0q1RUmu1hF2hj4-CnP7MUCYzxOKh7-0IaS6GSSrY8kbKF_TDf-guzXlcvuqBYnVdUakX6tOe8jmVkqE9hKHEPHRsDh0v7Pun6Q_kv1L5PY7OnqI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612775169</pqid></control><display><type>article</type><title>Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Fang, Zheng ; Dowe, David L ; Peiris, Shelton ; Rosadi, Dedi</creator><creatorcontrib>Fang, Zheng ; Dowe, David L ; Peiris, Shelton ; Rosadi, Dedi</creatorcontrib><description>Modeling and analysis of time series are important in applications including economics, engineering, environmental science and social science. Selecting the best time series model with accurate parameters in forecasting is a challenging objective for scientists and academic researchers. Hybrid models combining neural networks and traditional Autoregressive Moving Average (ARMA) models are being used to improve the accuracy of modeling and forecasting time series. Most of the existing time series models are selected by information-theoretic approaches, such as AIC, BIC, and HQ. This paper revisits a model selection technique based on Minimum Message Length (MML) and investigates its use in hybrid time series analysis. MML is a Bayesian information-theoretic approach and has been used in selecting the best ARMA model. We utilize the long short-term memory (LSTM) approach to construct a hybrid ARMA-LSTM model and show that MML performs better than AIC, BIC, and HQ in selecting the model-both in the traditional ARMA models (without LSTM) and with hybrid ARMA-LSTM models. These results held on simulated data and both real-world datasets that we considered.We also develop a simple MML ARIMA model.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e23121601</identifier><identifier>PMID: 34945907</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Autoregressive moving-average models ; Bayesian statistics ; Deep learning ; Economic analysis ; Forecasting ; Information theory ; long short-term memory ; minimum message length ; Model accuracy ; Modelling ; neural network ; Neural networks ; Time series ; Trends</subject><ispartof>Entropy (Basel, Switzerland), 2021-11, Vol.23 (12), p.1601</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e158006ee39bb263968a8ac4f760a1743f4530c54a8819bf8adc9b959289c3753</citedby><cites>FETCH-LOGICAL-c469t-e158006ee39bb263968a8ac4f760a1743f4530c54a8819bf8adc9b959289c3753</cites><orcidid>0000-0001-9856-109X ; 0000-0002-0583-5918 ; 0000-0002-2612-0831 ; 0000-0003-2689-253X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612775169/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612775169?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34945907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Zheng</creatorcontrib><creatorcontrib>Dowe, David L</creatorcontrib><creatorcontrib>Peiris, Shelton</creatorcontrib><creatorcontrib>Rosadi, Dedi</creatorcontrib><title>Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>Modeling and analysis of time series are important in applications including economics, engineering, environmental science and social science. Selecting the best time series model with accurate parameters in forecasting is a challenging objective for scientists and academic researchers. Hybrid models combining neural networks and traditional Autoregressive Moving Average (ARMA) models are being used to improve the accuracy of modeling and forecasting time series. Most of the existing time series models are selected by information-theoretic approaches, such as AIC, BIC, and HQ. This paper revisits a model selection technique based on Minimum Message Length (MML) and investigates its use in hybrid time series analysis. MML is a Bayesian information-theoretic approach and has been used in selecting the best ARMA model. We utilize the long short-term memory (LSTM) approach to construct a hybrid ARMA-LSTM model and show that MML performs better than AIC, BIC, and HQ in selecting the model-both in the traditional ARMA models (without LSTM) and with hybrid ARMA-LSTM models. These results held on simulated data and both real-world datasets that we considered.We also develop a simple MML ARIMA model.</description><subject>Autoregressive moving-average models</subject><subject>Bayesian statistics</subject><subject>Deep learning</subject><subject>Economic analysis</subject><subject>Forecasting</subject><subject>Information theory</subject><subject>long short-term memory</subject><subject>minimum message length</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Time series</subject><subject>Trends</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhoNYbF298A9IwBu92JqvySQ34lKsLewgaL0O-TgzzTIzqclMof--U7curVc55Dw8vMmL0DtKTjnX5DMwThmVhL5AJ5RovRackJdP5mP0upQdIYwv2Ct0zIUWlSb1CfraxDEO84AbKMV2gLcwdtM1jiO-uHM5Brz52WywHQPe_rpqcJMC9Pg8ZfC2THHs3qCj1vYF3j6eK_T7_NvV2cV6--P75dlmu_ZC6mkNtFKESACunWOSa6mssl60tSSW1oK3ouLEV8IqRbVrlQ1eO11pprTndcVX6HLvDcnuzE2Og813Jtlo_l6k3Bmbp-h7MFIRCzJo71grAIKuRZBeOOC0dbW0i-vL3nUzuwGCh3HKtn8mfb4Z47Xp0q1RUmu1hF2hj4-CnP7MUCYzxOKh7-0IaS6GSSrY8kbKF_TDf-guzXlcvuqBYnVdUakX6tOe8jmVkqE9hKHEPHRsDh0v7Pun6Q_kv1L5PY7OnqI</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Fang, Zheng</creator><creator>Dowe, David L</creator><creator>Peiris, Shelton</creator><creator>Rosadi, Dedi</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9856-109X</orcidid><orcidid>https://orcid.org/0000-0002-0583-5918</orcidid><orcidid>https://orcid.org/0000-0002-2612-0831</orcidid><orcidid>https://orcid.org/0000-0003-2689-253X</orcidid></search><sort><creationdate>20211129</creationdate><title>Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting</title><author>Fang, Zheng ; Dowe, David L ; Peiris, Shelton ; Rosadi, Dedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e158006ee39bb263968a8ac4f760a1743f4530c54a8819bf8adc9b959289c3753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive moving-average models</topic><topic>Bayesian statistics</topic><topic>Deep learning</topic><topic>Economic analysis</topic><topic>Forecasting</topic><topic>Information theory</topic><topic>long short-term memory</topic><topic>minimum message length</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Zheng</creatorcontrib><creatorcontrib>Dowe, David L</creatorcontrib><creatorcontrib>Peiris, Shelton</creatorcontrib><creatorcontrib>Rosadi, Dedi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Zheng</au><au>Dowe, David L</au><au>Peiris, Shelton</au><au>Rosadi, Dedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2021-11-29</date><risdate>2021</risdate><volume>23</volume><issue>12</issue><spage>1601</spage><pages>1601-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Modeling and analysis of time series are important in applications including economics, engineering, environmental science and social science. Selecting the best time series model with accurate parameters in forecasting is a challenging objective for scientists and academic researchers. Hybrid models combining neural networks and traditional Autoregressive Moving Average (ARMA) models are being used to improve the accuracy of modeling and forecasting time series. Most of the existing time series models are selected by information-theoretic approaches, such as AIC, BIC, and HQ. This paper revisits a model selection technique based on Minimum Message Length (MML) and investigates its use in hybrid time series analysis. MML is a Bayesian information-theoretic approach and has been used in selecting the best ARMA model. We utilize the long short-term memory (LSTM) approach to construct a hybrid ARMA-LSTM model and show that MML performs better than AIC, BIC, and HQ in selecting the model-both in the traditional ARMA models (without LSTM) and with hybrid ARMA-LSTM models. These results held on simulated data and both real-world datasets that we considered.We also develop a simple MML ARIMA model.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34945907</pmid><doi>10.3390/e23121601</doi><orcidid>https://orcid.org/0000-0001-9856-109X</orcidid><orcidid>https://orcid.org/0000-0002-0583-5918</orcidid><orcidid>https://orcid.org/0000-0002-2612-0831</orcidid><orcidid>https://orcid.org/0000-0003-2689-253X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2021-11, Vol.23 (12), p.1601 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_680ae6d9cb2f4eed974d6c4be31fb76a |
source | Open Access: DOAJ - Directory of Open Access Journals; Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Autoregressive moving-average models Bayesian statistics Deep learning Economic analysis Forecasting Information theory long short-term memory minimum message length Model accuracy Modelling neural network Neural networks Time series Trends |
title | Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimum%20Message%20Length%20in%20Hybrid%20ARMA%20and%20LSTM%20Model%20Forecasting&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Fang,%20Zheng&rft.date=2021-11-29&rft.volume=23&rft.issue=12&rft.spage=1601&rft.pages=1601-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e23121601&rft_dat=%3Cproquest_doaj_%3E2612775169%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-e158006ee39bb263968a8ac4f760a1743f4530c54a8819bf8adc9b959289c3753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612775169&rft_id=info:pmid/34945907&rfr_iscdi=true |