Loading…
Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models
Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs...
Saved in:
Published in: | Journal of intelligent systems 2021, Vol.28 (5), p.893-903 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3 |
container_end_page | 903 |
container_issue | 5 |
container_start_page | 893 |
container_title | Journal of intelligent systems |
container_volume | 28 |
creator | Sankar Ganesh, S. Arulmozhivarman, Pachaiyappan Tatavarti, Rao |
description | Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO
2
, CO, O
3
, PM
2.5
, SO
2
, and PM
10
for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index. |
doi_str_mv | 10.1515/jisys-2017-0277 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_681f9b96c56947b789602f4dabc50f92</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_681f9b96c56947b789602f4dabc50f92</doaj_id><sourcerecordid>2294455328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3</originalsourceid><addsrcrecordid>eNo9kUtLAzEUhYMoWLRrtwHXo3lnsizSaqEqigV3IZNHSZ1ONJmi_fdOW_FuzuVwOPfCB8AVRjeYY367jmVXKoKwrBCR8gSMCFZ42MX7KRghSlmFa4HOwbiUNRqGKcxrPgJ2lrK3pvSxW8FJzPBla9rY7-C8c_4HLsveNx2cdsVvmtbDFOAk9zFEG00Ln_w2H6T_TvmjDEkHX_0q-1Ji6uBjcr4tl-AsmLb48Z9egOVs-nb3UC2e7-d3k0VlqRR9VdOmcYg3iDBVCyKFlDXBXDY8UKeCJI4STG3AhDOEMJXSI2UYFo5Rj4KjF2B-7HXJrPVnjhuTdzqZqA9Gyitthtdt67WocVCNEpYLxWQjayUQCcyZxnIUFBm6ro9dnzl9bX3p9Tptcze8rwlRjHFOST2kbo8pm1Mp2Yf_qxjpPRh9AKP3YPQeDP0FceZ_6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294455328</pqid></control><display><type>article</type><title>Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models</title><source>Walter De Gruyter: Open Access Journals</source><creator>Sankar Ganesh, S. ; Arulmozhivarman, Pachaiyappan ; Tatavarti, Rao</creator><creatorcontrib>Sankar Ganesh, S. ; Arulmozhivarman, Pachaiyappan ; Tatavarti, Rao</creatorcontrib><description>Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO
2
, CO, O
3
, PM
2.5
, SO
2
, and PM
10
for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index.</description><identifier>ISSN: 0334-1860</identifier><identifier>EISSN: 2191-026X</identifier><identifier>DOI: 10.1515/jisys-2017-0277</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter GmbH</publisher><subject>Air quality ; air quality index ; Algorithms ; Artificial neural networks ; Autoregressive models ; Dependent variables ; ensemble of predictors ; Forecasting ; gradient descent ; Independent variables ; Multilayer perceptrons ; Neural networks ; Nitrogen dioxide ; Outdoor air quality ; Radial basis function ; Regression analysis ; Regression models ; Support vector machines</subject><ispartof>Journal of intelligent systems, 2021, Vol.28 (5), p.893-903</ispartof><rights>2019 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3</citedby><cites>FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sankar Ganesh, S.</creatorcontrib><creatorcontrib>Arulmozhivarman, Pachaiyappan</creatorcontrib><creatorcontrib>Tatavarti, Rao</creatorcontrib><title>Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models</title><title>Journal of intelligent systems</title><description>Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO
2
, CO, O
3
, PM
2.5
, SO
2
, and PM
10
for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index.</description><subject>Air quality</subject><subject>air quality index</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autoregressive models</subject><subject>Dependent variables</subject><subject>ensemble of predictors</subject><subject>Forecasting</subject><subject>gradient descent</subject><subject>Independent variables</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Nitrogen dioxide</subject><subject>Outdoor air quality</subject><subject>Radial basis function</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Support vector machines</subject><issn>0334-1860</issn><issn>2191-026X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kUtLAzEUhYMoWLRrtwHXo3lnsizSaqEqigV3IZNHSZ1ONJmi_fdOW_FuzuVwOPfCB8AVRjeYY367jmVXKoKwrBCR8gSMCFZ42MX7KRghSlmFa4HOwbiUNRqGKcxrPgJ2lrK3pvSxW8FJzPBla9rY7-C8c_4HLsveNx2cdsVvmtbDFOAk9zFEG00Ln_w2H6T_TvmjDEkHX_0q-1Ji6uBjcr4tl-AsmLb48Z9egOVs-nb3UC2e7-d3k0VlqRR9VdOmcYg3iDBVCyKFlDXBXDY8UKeCJI4STG3AhDOEMJXSI2UYFo5Rj4KjF2B-7HXJrPVnjhuTdzqZqA9Gyitthtdt67WocVCNEpYLxWQjayUQCcyZxnIUFBm6ro9dnzl9bX3p9Tptcze8rwlRjHFOST2kbo8pm1Mp2Yf_qxjpPRh9AKP3YPQeDP0FceZ_6Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sankar Ganesh, S.</creator><creator>Arulmozhivarman, Pachaiyappan</creator><creator>Tatavarti, Rao</creator><general>Walter de Gruyter GmbH</general><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>DOA</scope></search><sort><creationdate>2021</creationdate><title>Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models</title><author>Sankar Ganesh, S. ; Arulmozhivarman, Pachaiyappan ; Tatavarti, Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air quality</topic><topic>air quality index</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autoregressive models</topic><topic>Dependent variables</topic><topic>ensemble of predictors</topic><topic>Forecasting</topic><topic>gradient descent</topic><topic>Independent variables</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Nitrogen dioxide</topic><topic>Outdoor air quality</topic><topic>Radial basis function</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sankar Ganesh, S.</creatorcontrib><creatorcontrib>Arulmozhivarman, Pachaiyappan</creatorcontrib><creatorcontrib>Tatavarti, Rao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sankar Ganesh, S.</au><au>Arulmozhivarman, Pachaiyappan</au><au>Tatavarti, Rao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models</atitle><jtitle>Journal of intelligent systems</jtitle><date>2021</date><risdate>2021</risdate><volume>28</volume><issue>5</issue><spage>893</spage><epage>903</epage><pages>893-903</pages><issn>0334-1860</issn><eissn>2191-026X</eissn><abstract>Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO
2
, CO, O
3
, PM
2.5
, SO
2
, and PM
10
for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index.</abstract><cop>Berlin</cop><pub>Walter de Gruyter GmbH</pub><doi>10.1515/jisys-2017-0277</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0334-1860 |
ispartof | Journal of intelligent systems, 2021, Vol.28 (5), p.893-903 |
issn | 0334-1860 2191-026X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_681f9b96c56947b789602f4dabc50f92 |
source | Walter De Gruyter: Open Access Journals |
subjects | Air quality air quality index Algorithms Artificial neural networks Autoregressive models Dependent variables ensemble of predictors Forecasting gradient descent Independent variables Multilayer perceptrons Neural networks Nitrogen dioxide Outdoor air quality Radial basis function Regression analysis Regression models Support vector machines |
title | Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Air%20Quality%20Index%20Using%20an%20Ensemble%20of%20Artificial%20Neural%20Networks%20and%20Regression%20Models&rft.jtitle=Journal%20of%20intelligent%20systems&rft.au=Sankar%20Ganesh,%20S.&rft.date=2021&rft.volume=28&rft.issue=5&rft.spage=893&rft.epage=903&rft.pages=893-903&rft.issn=0334-1860&rft.eissn=2191-026X&rft_id=info:doi/10.1515/jisys-2017-0277&rft_dat=%3Cproquest_doaj_%3E2294455328%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294455328&rft_id=info:pmid/&rfr_iscdi=true |