Loading…

Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models

Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent systems 2021, Vol.28 (5), p.893-903
Main Authors: Sankar Ganesh, S., Arulmozhivarman, Pachaiyappan, Tatavarti, Rao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3
cites cdi_FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3
container_end_page 903
container_issue 5
container_start_page 893
container_title Journal of intelligent systems
container_volume 28
creator Sankar Ganesh, S.
Arulmozhivarman, Pachaiyappan
Tatavarti, Rao
description Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO 2 , CO, O 3 , PM 2.5 , SO 2 , and PM 10 for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index.
doi_str_mv 10.1515/jisys-2017-0277
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_681f9b96c56947b789602f4dabc50f92</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_681f9b96c56947b789602f4dabc50f92</doaj_id><sourcerecordid>2294455328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3</originalsourceid><addsrcrecordid>eNo9kUtLAzEUhYMoWLRrtwHXo3lnsizSaqEqigV3IZNHSZ1ONJmi_fdOW_FuzuVwOPfCB8AVRjeYY367jmVXKoKwrBCR8gSMCFZ42MX7KRghSlmFa4HOwbiUNRqGKcxrPgJ2lrK3pvSxW8FJzPBla9rY7-C8c_4HLsveNx2cdsVvmtbDFOAk9zFEG00Ln_w2H6T_TvmjDEkHX_0q-1Ji6uBjcr4tl-AsmLb48Z9egOVs-nb3UC2e7-d3k0VlqRR9VdOmcYg3iDBVCyKFlDXBXDY8UKeCJI4STG3AhDOEMJXSI2UYFo5Rj4KjF2B-7HXJrPVnjhuTdzqZqA9Gyitthtdt67WocVCNEpYLxWQjayUQCcyZxnIUFBm6ro9dnzl9bX3p9Tptcze8rwlRjHFOST2kbo8pm1Mp2Yf_qxjpPRh9AKP3YPQeDP0FceZ_6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294455328</pqid></control><display><type>article</type><title>Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models</title><source>Walter De Gruyter: Open Access Journals</source><creator>Sankar Ganesh, S. ; Arulmozhivarman, Pachaiyappan ; Tatavarti, Rao</creator><creatorcontrib>Sankar Ganesh, S. ; Arulmozhivarman, Pachaiyappan ; Tatavarti, Rao</creatorcontrib><description>Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO 2 , CO, O 3 , PM 2.5 , SO 2 , and PM 10 for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index.</description><identifier>ISSN: 0334-1860</identifier><identifier>EISSN: 2191-026X</identifier><identifier>DOI: 10.1515/jisys-2017-0277</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter GmbH</publisher><subject>Air quality ; air quality index ; Algorithms ; Artificial neural networks ; Autoregressive models ; Dependent variables ; ensemble of predictors ; Forecasting ; gradient descent ; Independent variables ; Multilayer perceptrons ; Neural networks ; Nitrogen dioxide ; Outdoor air quality ; Radial basis function ; Regression analysis ; Regression models ; Support vector machines</subject><ispartof>Journal of intelligent systems, 2021, Vol.28 (5), p.893-903</ispartof><rights>2019 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3</citedby><cites>FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sankar Ganesh, S.</creatorcontrib><creatorcontrib>Arulmozhivarman, Pachaiyappan</creatorcontrib><creatorcontrib>Tatavarti, Rao</creatorcontrib><title>Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models</title><title>Journal of intelligent systems</title><description>Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO 2 , CO, O 3 , PM 2.5 , SO 2 , and PM 10 for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index.</description><subject>Air quality</subject><subject>air quality index</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autoregressive models</subject><subject>Dependent variables</subject><subject>ensemble of predictors</subject><subject>Forecasting</subject><subject>gradient descent</subject><subject>Independent variables</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Nitrogen dioxide</subject><subject>Outdoor air quality</subject><subject>Radial basis function</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Support vector machines</subject><issn>0334-1860</issn><issn>2191-026X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kUtLAzEUhYMoWLRrtwHXo3lnsizSaqEqigV3IZNHSZ1ONJmi_fdOW_FuzuVwOPfCB8AVRjeYY367jmVXKoKwrBCR8gSMCFZ42MX7KRghSlmFa4HOwbiUNRqGKcxrPgJ2lrK3pvSxW8FJzPBla9rY7-C8c_4HLsveNx2cdsVvmtbDFOAk9zFEG00Ln_w2H6T_TvmjDEkHX_0q-1Ji6uBjcr4tl-AsmLb48Z9egOVs-nb3UC2e7-d3k0VlqRR9VdOmcYg3iDBVCyKFlDXBXDY8UKeCJI4STG3AhDOEMJXSI2UYFo5Rj4KjF2B-7HXJrPVnjhuTdzqZqA9Gyitthtdt67WocVCNEpYLxWQjayUQCcyZxnIUFBm6ro9dnzl9bX3p9Tptcze8rwlRjHFOST2kbo8pm1Mp2Yf_qxjpPRh9AKP3YPQeDP0FceZ_6Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sankar Ganesh, S.</creator><creator>Arulmozhivarman, Pachaiyappan</creator><creator>Tatavarti, Rao</creator><general>Walter de Gruyter GmbH</general><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>DOA</scope></search><sort><creationdate>2021</creationdate><title>Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models</title><author>Sankar Ganesh, S. ; Arulmozhivarman, Pachaiyappan ; Tatavarti, Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air quality</topic><topic>air quality index</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autoregressive models</topic><topic>Dependent variables</topic><topic>ensemble of predictors</topic><topic>Forecasting</topic><topic>gradient descent</topic><topic>Independent variables</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Nitrogen dioxide</topic><topic>Outdoor air quality</topic><topic>Radial basis function</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sankar Ganesh, S.</creatorcontrib><creatorcontrib>Arulmozhivarman, Pachaiyappan</creatorcontrib><creatorcontrib>Tatavarti, Rao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sankar Ganesh, S.</au><au>Arulmozhivarman, Pachaiyappan</au><au>Tatavarti, Rao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models</atitle><jtitle>Journal of intelligent systems</jtitle><date>2021</date><risdate>2021</risdate><volume>28</volume><issue>5</issue><spage>893</spage><epage>903</epage><pages>893-903</pages><issn>0334-1860</issn><eissn>2191-026X</eissn><abstract>Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the concentrations of NO 2 , CO, O 3 , PM 2.5 , SO 2 , and PM 10 for the years 2010–2016 in Houston and Los Angeles are the independent variables. For the final forecast, several ensemble models of individual neural network predictors and individual regression predictors are presented. This proposed approach performs with the highest efficiency in terms of forecasting air quality index.</abstract><cop>Berlin</cop><pub>Walter de Gruyter GmbH</pub><doi>10.1515/jisys-2017-0277</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0334-1860
ispartof Journal of intelligent systems, 2021, Vol.28 (5), p.893-903
issn 0334-1860
2191-026X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_681f9b96c56947b789602f4dabc50f92
source Walter De Gruyter: Open Access Journals
subjects Air quality
air quality index
Algorithms
Artificial neural networks
Autoregressive models
Dependent variables
ensemble of predictors
Forecasting
gradient descent
Independent variables
Multilayer perceptrons
Neural networks
Nitrogen dioxide
Outdoor air quality
Radial basis function
Regression analysis
Regression models
Support vector machines
title Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Air%20Quality%20Index%20Using%20an%20Ensemble%20of%20Artificial%20Neural%20Networks%20and%20Regression%20Models&rft.jtitle=Journal%20of%20intelligent%20systems&rft.au=Sankar%20Ganesh,%20S.&rft.date=2021&rft.volume=28&rft.issue=5&rft.spage=893&rft.epage=903&rft.pages=893-903&rft.issn=0334-1860&rft.eissn=2191-026X&rft_id=info:doi/10.1515/jisys-2017-0277&rft_dat=%3Cproquest_doaj_%3E2294455328%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-83bbd05b0249862767782157b5f3d9f72d3213cf1254001377e09a416d43e0fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2294455328&rft_id=info:pmid/&rfr_iscdi=true