Loading…

Quasi‐solid‐state conversion cathode materials for room‐temperature sodium–sulfur batteries

Room‐temperature sodium–sulfur batteries (NaSBs) are promising candidates for next‐generation large‐scale energy storage solutions. However, the well‐known polysulfide shuttling of soluble long‐chain sulfur intermediates still remains a limitation in NaSBs, leading to rapid capacity loss arising fro...

Full description

Saved in:
Bibliographic Details
Published in:Battery energy 2022-07, Vol.1 (3), p.n/a
Main Authors: Lim, Carina Yi Jing, Seh, Zhi Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3798-8e767810baec96bc6f6e57705ffab30ca369980079520f4ee4291bc9481378c83
cites cdi_FETCH-LOGICAL-c3798-8e767810baec96bc6f6e57705ffab30ca369980079520f4ee4291bc9481378c83
container_end_page n/a
container_issue 3
container_start_page
container_title Battery energy
container_volume 1
creator Lim, Carina Yi Jing
Seh, Zhi Wei
description Room‐temperature sodium–sulfur batteries (NaSBs) are promising candidates for next‐generation large‐scale energy storage solutions. However, the well‐known polysulfide shuttling of soluble long‐chain sulfur intermediates still remains a limitation in NaSBs, leading to rapid capacity loss arising from the dissolution of active sulfur into the electrolyte. This problem is effectively circumvented in quasi‐solid‐state conversion cathodes by elimination of the presence of these soluble intermediates altogether, with only insoluble intermediates formed in the process. Herein, we discuss various cathode materials that undergo quasi‐solid‐state conversion when cycled in a liquid electrolyte, including chemically bonded short‐chain sulfur species, short‐chain sulfur via physical confinement, and quasi‐solid‐state conversion cathodes with long‐chain sulfur moieties. We conclude by highlighting the current challenges and possible strategies to improve the mechanistic understanding and cycling performance of NaSBs for practical applications. With shuttling of long‐chain polysulfides plaguing sodium–sulfur batteries, quasi‐solid‐state conversion cathodes allow reaction pathways to bypass these soluble intermediates altogether for shuttle‐free batteries.
doi_str_mv 10.1002/bte2.20220008
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_682dbb47f7df4f3d91ffe4b6c08b0f8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_682dbb47f7df4f3d91ffe4b6c08b0f8b</doaj_id><sourcerecordid>3091943189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3798-8e767810baec96bc6f6e57705ffab30ca369980079520f4ee4291bc9481378c83</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhYeSQoOTZfcDXY9zJY31s0yD8wOBUkjXQtJctTJjy5E0Cd7lEQJ9wzxJ5LoJXXV1L4fvnHvhNM1nAnMCQM9sQTqnQCkAyA_NMRVcdoQrfvTP_qk5zXlVCSoJYVwcN-77ZHJ4eXrOcQzDfhZTsHVx84Aph7hpnSm_4oDtuuopmDG3PqY2xbiudMH1FpMpU8I2xyFMVfydp9FPqbWm7B2YT5qPvvrw9O-cNT8ul3cX193tt6ubi_PbzjGhZCdRcCEJWINOceu457gQAhbeG8vAGcaVkgBCLSj4HrGnilinekmYkE6yWXNzyB2iWeltCmuTdjqaoP8IMf3UJpXgRtRc0sHaXngx-N6zQRHvsbfcgbTgpa1ZXw5Z2xTvJ8xFr-KUNvV9zUAR1TMiVaW6A-VSzDmhf79KQO9r0fta9FstlRcH_jGMuPs_rL_eLem78xWZVJWr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3091943189</pqid></control><display><type>article</type><title>Quasi‐solid‐state conversion cathode materials for room‐temperature sodium–sulfur batteries</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Lim, Carina Yi Jing ; Seh, Zhi Wei</creator><creatorcontrib>Lim, Carina Yi Jing ; Seh, Zhi Wei</creatorcontrib><description>Room‐temperature sodium–sulfur batteries (NaSBs) are promising candidates for next‐generation large‐scale energy storage solutions. However, the well‐known polysulfide shuttling of soluble long‐chain sulfur intermediates still remains a limitation in NaSBs, leading to rapid capacity loss arising from the dissolution of active sulfur into the electrolyte. This problem is effectively circumvented in quasi‐solid‐state conversion cathodes by elimination of the presence of these soluble intermediates altogether, with only insoluble intermediates formed in the process. Herein, we discuss various cathode materials that undergo quasi‐solid‐state conversion when cycled in a liquid electrolyte, including chemically bonded short‐chain sulfur species, short‐chain sulfur via physical confinement, and quasi‐solid‐state conversion cathodes with long‐chain sulfur moieties. We conclude by highlighting the current challenges and possible strategies to improve the mechanistic understanding and cycling performance of NaSBs for practical applications. With shuttling of long‐chain polysulfides plaguing sodium–sulfur batteries, quasi‐solid‐state conversion cathodes allow reaction pathways to bypass these soluble intermediates altogether for shuttle‐free batteries.</description><identifier>ISSN: 2768-1696</identifier><identifier>ISSN: 2768-1688</identifier><identifier>EISSN: 2768-1696</identifier><identifier>DOI: 10.1002/bte2.20220008</identifier><language>eng</language><publisher>Shanghai: John Wiley &amp; Sons, Inc</publisher><subject>Carbon ; Cathodes ; Cathodic dissolution ; Chemical bonds ; Conductivity ; Dissolution ; Electrode materials ; Electrolytes ; Energy storage ; Morphology ; quasi‐solid‐state ; Selenium ; short‐chain sulfur ; Sodium ; sodium–sulfur batteries ; Sulfur ; sulfur cathodes</subject><ispartof>Battery energy, 2022-07, Vol.1 (3), p.n/a</ispartof><rights>2022 The Authors. published by Xijing University and John Wiley &amp; Sons Australia, Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3798-8e767810baec96bc6f6e57705ffab30ca369980079520f4ee4291bc9481378c83</citedby><cites>FETCH-LOGICAL-c3798-8e767810baec96bc6f6e57705ffab30ca369980079520f4ee4291bc9481378c83</cites><orcidid>0000-0003-0953-567X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbte2.20220008$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3091943189?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11543,25733,27903,27904,36991,44569,46030,46454</link.rule.ids></links><search><creatorcontrib>Lim, Carina Yi Jing</creatorcontrib><creatorcontrib>Seh, Zhi Wei</creatorcontrib><title>Quasi‐solid‐state conversion cathode materials for room‐temperature sodium–sulfur batteries</title><title>Battery energy</title><description>Room‐temperature sodium–sulfur batteries (NaSBs) are promising candidates for next‐generation large‐scale energy storage solutions. However, the well‐known polysulfide shuttling of soluble long‐chain sulfur intermediates still remains a limitation in NaSBs, leading to rapid capacity loss arising from the dissolution of active sulfur into the electrolyte. This problem is effectively circumvented in quasi‐solid‐state conversion cathodes by elimination of the presence of these soluble intermediates altogether, with only insoluble intermediates formed in the process. Herein, we discuss various cathode materials that undergo quasi‐solid‐state conversion when cycled in a liquid electrolyte, including chemically bonded short‐chain sulfur species, short‐chain sulfur via physical confinement, and quasi‐solid‐state conversion cathodes with long‐chain sulfur moieties. We conclude by highlighting the current challenges and possible strategies to improve the mechanistic understanding and cycling performance of NaSBs for practical applications. With shuttling of long‐chain polysulfides plaguing sodium–sulfur batteries, quasi‐solid‐state conversion cathodes allow reaction pathways to bypass these soluble intermediates altogether for shuttle‐free batteries.</description><subject>Carbon</subject><subject>Cathodes</subject><subject>Cathodic dissolution</subject><subject>Chemical bonds</subject><subject>Conductivity</subject><subject>Dissolution</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Morphology</subject><subject>quasi‐solid‐state</subject><subject>Selenium</subject><subject>short‐chain sulfur</subject><subject>Sodium</subject><subject>sodium–sulfur batteries</subject><subject>Sulfur</subject><subject>sulfur cathodes</subject><issn>2768-1696</issn><issn>2768-1688</issn><issn>2768-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1qGzEUhYeSQoOTZfcDXY9zJY31s0yD8wOBUkjXQtJctTJjy5E0Cd7lEQJ9wzxJ5LoJXXV1L4fvnHvhNM1nAnMCQM9sQTqnQCkAyA_NMRVcdoQrfvTP_qk5zXlVCSoJYVwcN-77ZHJ4eXrOcQzDfhZTsHVx84Aph7hpnSm_4oDtuuopmDG3PqY2xbiudMH1FpMpU8I2xyFMVfydp9FPqbWm7B2YT5qPvvrw9O-cNT8ul3cX193tt6ubi_PbzjGhZCdRcCEJWINOceu457gQAhbeG8vAGcaVkgBCLSj4HrGnilinekmYkE6yWXNzyB2iWeltCmuTdjqaoP8IMf3UJpXgRtRc0sHaXngx-N6zQRHvsbfcgbTgpa1ZXw5Z2xTvJ8xFr-KUNvV9zUAR1TMiVaW6A-VSzDmhf79KQO9r0fta9FstlRcH_jGMuPs_rL_eLem78xWZVJWr</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Lim, Carina Yi Jing</creator><creator>Seh, Zhi Wei</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0953-567X</orcidid></search><sort><creationdate>202207</creationdate><title>Quasi‐solid‐state conversion cathode materials for room‐temperature sodium–sulfur batteries</title><author>Lim, Carina Yi Jing ; Seh, Zhi Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3798-8e767810baec96bc6f6e57705ffab30ca369980079520f4ee4291bc9481378c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Cathodes</topic><topic>Cathodic dissolution</topic><topic>Chemical bonds</topic><topic>Conductivity</topic><topic>Dissolution</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Morphology</topic><topic>quasi‐solid‐state</topic><topic>Selenium</topic><topic>short‐chain sulfur</topic><topic>Sodium</topic><topic>sodium–sulfur batteries</topic><topic>Sulfur</topic><topic>sulfur cathodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Carina Yi Jing</creatorcontrib><creatorcontrib>Seh, Zhi Wei</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Battery energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Carina Yi Jing</au><au>Seh, Zhi Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi‐solid‐state conversion cathode materials for room‐temperature sodium–sulfur batteries</atitle><jtitle>Battery energy</jtitle><date>2022-07</date><risdate>2022</risdate><volume>1</volume><issue>3</issue><epage>n/a</epage><issn>2768-1696</issn><issn>2768-1688</issn><eissn>2768-1696</eissn><abstract>Room‐temperature sodium–sulfur batteries (NaSBs) are promising candidates for next‐generation large‐scale energy storage solutions. However, the well‐known polysulfide shuttling of soluble long‐chain sulfur intermediates still remains a limitation in NaSBs, leading to rapid capacity loss arising from the dissolution of active sulfur into the electrolyte. This problem is effectively circumvented in quasi‐solid‐state conversion cathodes by elimination of the presence of these soluble intermediates altogether, with only insoluble intermediates formed in the process. Herein, we discuss various cathode materials that undergo quasi‐solid‐state conversion when cycled in a liquid electrolyte, including chemically bonded short‐chain sulfur species, short‐chain sulfur via physical confinement, and quasi‐solid‐state conversion cathodes with long‐chain sulfur moieties. We conclude by highlighting the current challenges and possible strategies to improve the mechanistic understanding and cycling performance of NaSBs for practical applications. With shuttling of long‐chain polysulfides plaguing sodium–sulfur batteries, quasi‐solid‐state conversion cathodes allow reaction pathways to bypass these soluble intermediates altogether for shuttle‐free batteries.</abstract><cop>Shanghai</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/bte2.20220008</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0953-567X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2768-1696
ispartof Battery energy, 2022-07, Vol.1 (3), p.n/a
issn 2768-1696
2768-1688
2768-1696
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_682dbb47f7df4f3d91ffe4b6c08b0f8b
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Carbon
Cathodes
Cathodic dissolution
Chemical bonds
Conductivity
Dissolution
Electrode materials
Electrolytes
Energy storage
Morphology
quasi‐solid‐state
Selenium
short‐chain sulfur
Sodium
sodium–sulfur batteries
Sulfur
sulfur cathodes
title Quasi‐solid‐state conversion cathode materials for room‐temperature sodium–sulfur batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi%E2%80%90solid%E2%80%90state%20conversion%20cathode%20materials%20for%20room%E2%80%90temperature%20sodium%E2%80%93sulfur%20batteries&rft.jtitle=Battery%20energy&rft.au=Lim,%20Carina%20Yi%20Jing&rft.date=2022-07&rft.volume=1&rft.issue=3&rft.epage=n/a&rft.issn=2768-1696&rft.eissn=2768-1696&rft_id=info:doi/10.1002/bte2.20220008&rft_dat=%3Cproquest_doaj_%3E3091943189%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3798-8e767810baec96bc6f6e57705ffab30ca369980079520f4ee4291bc9481378c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3091943189&rft_id=info:pmid/&rfr_iscdi=true