Loading…

A Comparative Analysis of Peak Load Shaving Strategies for Isolated Microgrid Using Actual Data

Peak load reduction is one of the most essential obligations and cost-effective tasks for electrical energy consumers. An isolated microgrid (IMG) system is an independent limited capacity power system where the peak shaving application can perform a vital role in the economic operation. This paper...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-01, Vol.15 (1), p.330
Main Authors: Rana, Md Masud, Rahman, Akhlaqur, Uddin, Moslem, Sarkar, Md Rasel, Shezan, Sk. A., Ishraque, Md. Fatin, Rafin, S M Sajjad Hossain, Atef, Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-e155af2eb205eaefff93abc94280b986d086cee6fcbd251d7719e08dc1c55d343
cites cdi_FETCH-LOGICAL-c361t-e155af2eb205eaefff93abc94280b986d086cee6fcbd251d7719e08dc1c55d343
container_end_page
container_issue 1
container_start_page 330
container_title Energies (Basel)
container_volume 15
creator Rana, Md Masud
Rahman, Akhlaqur
Uddin, Moslem
Sarkar, Md Rasel
Shezan, Sk. A.
Ishraque, Md. Fatin
Rafin, S M Sajjad Hossain
Atef, Mohamed
description Peak load reduction is one of the most essential obligations and cost-effective tasks for electrical energy consumers. An isolated microgrid (IMG) system is an independent limited capacity power system where the peak shaving application can perform a vital role in the economic operation. This paper presents a comparative analysis of a categorical variable decision tree algorithm (CVDTA) with the most common peak shaving technique, namely, the general capacity addition technique, to evaluate the peak shaving performance for an IMG system. The CVDTA algorithm deals with the hybrid photovoltaic (PV)—battery energy storage system (BESS) to provide the peak shaving service where the capacity addition technique uses a peaking generator to minimize the peak demand. An actual IMG system model is developed in MATLAB/Simulink software to analyze the peak shaving performance. The model consists of four major components such as, PV, BESS, variable load, and gas turbine generator (GTG) dispatch models for the proposed algorithm, where the BESS and PV models are not applicable for the capacity addition technique. Actual variable load data and PV generation data are considered to conduct the simulation case studies which are collected from a real IMG system. The simulation result exhibits the effectiveness of the CVDTA algorithm which can minimize the peak demand better than the capacity addition technique. By ensuring the peak shaving operation and handling the economic generation dispatch, the CVDTA algorithm can ensure more energy savings, fewer system losses, less operation and maintenance (O&M) cost, etc., where the general capacity addition technique is limited.
doi_str_mv 10.3390/en15010330
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_683cb8ec675140cfb10348480e134327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_683cb8ec675140cfb10348480e134327</doaj_id><sourcerecordid>2618221922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e155af2eb205eaefff93abc94280b986d086cee6fcbd251d7719e08dc1c55d343</originalsourceid><addsrcrecordid>eNpNkdtKAzEQhhdRsNTe-AQB74RqDnvIXpZ6KlQUaq_DbDKpqdumJttC397Uijo3c-DjH-afLLtk9EaImt7imhWUUSHoSdZjdV0OGa3E6b_6PBvEuKQphGBCiF6mRmTsVxsI0LkdktEa2n10kXhLXhE-yNSDIbN32Ln1gsy6hOHCYSTWBzKJvk29Ic9OB78IzpB5PHAj3W2hJXfQwUV2ZqGNOPjJ_Wz-cP82fhpOXx4n49F0qEXJuiGyogDLseG0QEBrbS2g0XXOJW1qWRoqS41YWt0YXjBTVaxGKo1muiiMyEU_mxx1jYel2gS3grBXHpz6HviwUBA6p1tUpRS6kajLqmA51bZJluUylxRZEuJV0ro6am2C_9xi7NTSb0NyJipeMsk5qzlP1PWRSrfHGND-bmVUHf6h_v4hvgCERHuM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618221922</pqid></control><display><type>article</type><title>A Comparative Analysis of Peak Load Shaving Strategies for Isolated Microgrid Using Actual Data</title><source>Publicly Available Content Database</source><creator>Rana, Md Masud ; Rahman, Akhlaqur ; Uddin, Moslem ; Sarkar, Md Rasel ; Shezan, Sk. A. ; Ishraque, Md. Fatin ; Rafin, S M Sajjad Hossain ; Atef, Mohamed</creator><creatorcontrib>Rana, Md Masud ; Rahman, Akhlaqur ; Uddin, Moslem ; Sarkar, Md Rasel ; Shezan, Sk. A. ; Ishraque, Md. Fatin ; Rafin, S M Sajjad Hossain ; Atef, Mohamed</creatorcontrib><description>Peak load reduction is one of the most essential obligations and cost-effective tasks for electrical energy consumers. An isolated microgrid (IMG) system is an independent limited capacity power system where the peak shaving application can perform a vital role in the economic operation. This paper presents a comparative analysis of a categorical variable decision tree algorithm (CVDTA) with the most common peak shaving technique, namely, the general capacity addition technique, to evaluate the peak shaving performance for an IMG system. The CVDTA algorithm deals with the hybrid photovoltaic (PV)—battery energy storage system (BESS) to provide the peak shaving service where the capacity addition technique uses a peaking generator to minimize the peak demand. An actual IMG system model is developed in MATLAB/Simulink software to analyze the peak shaving performance. The model consists of four major components such as, PV, BESS, variable load, and gas turbine generator (GTG) dispatch models for the proposed algorithm, where the BESS and PV models are not applicable for the capacity addition technique. Actual variable load data and PV generation data are considered to conduct the simulation case studies which are collected from a real IMG system. The simulation result exhibits the effectiveness of the CVDTA algorithm which can minimize the peak demand better than the capacity addition technique. By ensuring the peak shaving operation and handling the economic generation dispatch, the CVDTA algorithm can ensure more energy savings, fewer system losses, less operation and maintenance (O&amp;M) cost, etc., where the general capacity addition technique is limited.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15010330</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; battery energy storage system ; Comparative analysis ; Consumers ; Decision trees ; Distributed generation ; Electric vehicles ; Electrical loads ; Electricity ; Energy conservation ; Energy storage ; Forecasting techniques ; Gas turbines ; Linear programming ; Methods ; microgrid system ; Peak demand ; Peak load ; peak load shaving ; peak shaving technique ; photovoltaic system ; Photovoltaics ; Simulation ; Turbogenerators</subject><ispartof>Energies (Basel), 2022-01, Vol.15 (1), p.330</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e155af2eb205eaefff93abc94280b986d086cee6fcbd251d7719e08dc1c55d343</citedby><cites>FETCH-LOGICAL-c361t-e155af2eb205eaefff93abc94280b986d086cee6fcbd251d7719e08dc1c55d343</cites><orcidid>0000-0001-8228-4390 ; 0000-0002-1693-011X ; 0000-0002-5491-4436 ; 0000-0002-6267-0291 ; 0000-0003-3636-8977 ; 0000-0003-0863-5169 ; 0000-0003-0516-8593 ; 0000-0001-5369-6820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2618221922/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2618221922?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Rana, Md Masud</creatorcontrib><creatorcontrib>Rahman, Akhlaqur</creatorcontrib><creatorcontrib>Uddin, Moslem</creatorcontrib><creatorcontrib>Sarkar, Md Rasel</creatorcontrib><creatorcontrib>Shezan, Sk. A.</creatorcontrib><creatorcontrib>Ishraque, Md. Fatin</creatorcontrib><creatorcontrib>Rafin, S M Sajjad Hossain</creatorcontrib><creatorcontrib>Atef, Mohamed</creatorcontrib><title>A Comparative Analysis of Peak Load Shaving Strategies for Isolated Microgrid Using Actual Data</title><title>Energies (Basel)</title><description>Peak load reduction is one of the most essential obligations and cost-effective tasks for electrical energy consumers. An isolated microgrid (IMG) system is an independent limited capacity power system where the peak shaving application can perform a vital role in the economic operation. This paper presents a comparative analysis of a categorical variable decision tree algorithm (CVDTA) with the most common peak shaving technique, namely, the general capacity addition technique, to evaluate the peak shaving performance for an IMG system. The CVDTA algorithm deals with the hybrid photovoltaic (PV)—battery energy storage system (BESS) to provide the peak shaving service where the capacity addition technique uses a peaking generator to minimize the peak demand. An actual IMG system model is developed in MATLAB/Simulink software to analyze the peak shaving performance. The model consists of four major components such as, PV, BESS, variable load, and gas turbine generator (GTG) dispatch models for the proposed algorithm, where the BESS and PV models are not applicable for the capacity addition technique. Actual variable load data and PV generation data are considered to conduct the simulation case studies which are collected from a real IMG system. The simulation result exhibits the effectiveness of the CVDTA algorithm which can minimize the peak demand better than the capacity addition technique. By ensuring the peak shaving operation and handling the economic generation dispatch, the CVDTA algorithm can ensure more energy savings, fewer system losses, less operation and maintenance (O&amp;M) cost, etc., where the general capacity addition technique is limited.</description><subject>Algorithms</subject><subject>battery energy storage system</subject><subject>Comparative analysis</subject><subject>Consumers</subject><subject>Decision trees</subject><subject>Distributed generation</subject><subject>Electric vehicles</subject><subject>Electrical loads</subject><subject>Electricity</subject><subject>Energy conservation</subject><subject>Energy storage</subject><subject>Forecasting techniques</subject><subject>Gas turbines</subject><subject>Linear programming</subject><subject>Methods</subject><subject>microgrid system</subject><subject>Peak demand</subject><subject>Peak load</subject><subject>peak load shaving</subject><subject>peak shaving technique</subject><subject>photovoltaic system</subject><subject>Photovoltaics</subject><subject>Simulation</subject><subject>Turbogenerators</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKAzEQhhdRsNTe-AQB74RqDnvIXpZ6KlQUaq_DbDKpqdumJttC397Uijo3c-DjH-afLLtk9EaImt7imhWUUSHoSdZjdV0OGa3E6b_6PBvEuKQphGBCiF6mRmTsVxsI0LkdktEa2n10kXhLXhE-yNSDIbN32Ln1gsy6hOHCYSTWBzKJvk29Ic9OB78IzpB5PHAj3W2hJXfQwUV2ZqGNOPjJ_Wz-cP82fhpOXx4n49F0qEXJuiGyogDLseG0QEBrbS2g0XXOJW1qWRoqS41YWt0YXjBTVaxGKo1muiiMyEU_mxx1jYel2gS3grBXHpz6HviwUBA6p1tUpRS6kajLqmA51bZJluUylxRZEuJV0ro6am2C_9xi7NTSb0NyJipeMsk5qzlP1PWRSrfHGND-bmVUHf6h_v4hvgCERHuM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Rana, Md Masud</creator><creator>Rahman, Akhlaqur</creator><creator>Uddin, Moslem</creator><creator>Sarkar, Md Rasel</creator><creator>Shezan, Sk. A.</creator><creator>Ishraque, Md. Fatin</creator><creator>Rafin, S M Sajjad Hossain</creator><creator>Atef, Mohamed</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8228-4390</orcidid><orcidid>https://orcid.org/0000-0002-1693-011X</orcidid><orcidid>https://orcid.org/0000-0002-5491-4436</orcidid><orcidid>https://orcid.org/0000-0002-6267-0291</orcidid><orcidid>https://orcid.org/0000-0003-3636-8977</orcidid><orcidid>https://orcid.org/0000-0003-0863-5169</orcidid><orcidid>https://orcid.org/0000-0003-0516-8593</orcidid><orcidid>https://orcid.org/0000-0001-5369-6820</orcidid></search><sort><creationdate>20220101</creationdate><title>A Comparative Analysis of Peak Load Shaving Strategies for Isolated Microgrid Using Actual Data</title><author>Rana, Md Masud ; Rahman, Akhlaqur ; Uddin, Moslem ; Sarkar, Md Rasel ; Shezan, Sk. A. ; Ishraque, Md. Fatin ; Rafin, S M Sajjad Hossain ; Atef, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e155af2eb205eaefff93abc94280b986d086cee6fcbd251d7719e08dc1c55d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>battery energy storage system</topic><topic>Comparative analysis</topic><topic>Consumers</topic><topic>Decision trees</topic><topic>Distributed generation</topic><topic>Electric vehicles</topic><topic>Electrical loads</topic><topic>Electricity</topic><topic>Energy conservation</topic><topic>Energy storage</topic><topic>Forecasting techniques</topic><topic>Gas turbines</topic><topic>Linear programming</topic><topic>Methods</topic><topic>microgrid system</topic><topic>Peak demand</topic><topic>Peak load</topic><topic>peak load shaving</topic><topic>peak shaving technique</topic><topic>photovoltaic system</topic><topic>Photovoltaics</topic><topic>Simulation</topic><topic>Turbogenerators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, Md Masud</creatorcontrib><creatorcontrib>Rahman, Akhlaqur</creatorcontrib><creatorcontrib>Uddin, Moslem</creatorcontrib><creatorcontrib>Sarkar, Md Rasel</creatorcontrib><creatorcontrib>Shezan, Sk. A.</creatorcontrib><creatorcontrib>Ishraque, Md. Fatin</creatorcontrib><creatorcontrib>Rafin, S M Sajjad Hossain</creatorcontrib><creatorcontrib>Atef, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, Md Masud</au><au>Rahman, Akhlaqur</au><au>Uddin, Moslem</au><au>Sarkar, Md Rasel</au><au>Shezan, Sk. A.</au><au>Ishraque, Md. Fatin</au><au>Rafin, S M Sajjad Hossain</au><au>Atef, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Analysis of Peak Load Shaving Strategies for Isolated Microgrid Using Actual Data</atitle><jtitle>Energies (Basel)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>330</spage><pages>330-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Peak load reduction is one of the most essential obligations and cost-effective tasks for electrical energy consumers. An isolated microgrid (IMG) system is an independent limited capacity power system where the peak shaving application can perform a vital role in the economic operation. This paper presents a comparative analysis of a categorical variable decision tree algorithm (CVDTA) with the most common peak shaving technique, namely, the general capacity addition technique, to evaluate the peak shaving performance for an IMG system. The CVDTA algorithm deals with the hybrid photovoltaic (PV)—battery energy storage system (BESS) to provide the peak shaving service where the capacity addition technique uses a peaking generator to minimize the peak demand. An actual IMG system model is developed in MATLAB/Simulink software to analyze the peak shaving performance. The model consists of four major components such as, PV, BESS, variable load, and gas turbine generator (GTG) dispatch models for the proposed algorithm, where the BESS and PV models are not applicable for the capacity addition technique. Actual variable load data and PV generation data are considered to conduct the simulation case studies which are collected from a real IMG system. The simulation result exhibits the effectiveness of the CVDTA algorithm which can minimize the peak demand better than the capacity addition technique. By ensuring the peak shaving operation and handling the economic generation dispatch, the CVDTA algorithm can ensure more energy savings, fewer system losses, less operation and maintenance (O&amp;M) cost, etc., where the general capacity addition technique is limited.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15010330</doi><orcidid>https://orcid.org/0000-0001-8228-4390</orcidid><orcidid>https://orcid.org/0000-0002-1693-011X</orcidid><orcidid>https://orcid.org/0000-0002-5491-4436</orcidid><orcidid>https://orcid.org/0000-0002-6267-0291</orcidid><orcidid>https://orcid.org/0000-0003-3636-8977</orcidid><orcidid>https://orcid.org/0000-0003-0863-5169</orcidid><orcidid>https://orcid.org/0000-0003-0516-8593</orcidid><orcidid>https://orcid.org/0000-0001-5369-6820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2022-01, Vol.15 (1), p.330
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_683cb8ec675140cfb10348480e134327
source Publicly Available Content Database
subjects Algorithms
battery energy storage system
Comparative analysis
Consumers
Decision trees
Distributed generation
Electric vehicles
Electrical loads
Electricity
Energy conservation
Energy storage
Forecasting techniques
Gas turbines
Linear programming
Methods
microgrid system
Peak demand
Peak load
peak load shaving
peak shaving technique
photovoltaic system
Photovoltaics
Simulation
Turbogenerators
title A Comparative Analysis of Peak Load Shaving Strategies for Isolated Microgrid Using Actual Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Analysis%20of%20Peak%20Load%20Shaving%20Strategies%20for%20Isolated%20Microgrid%20Using%20Actual%20Data&rft.jtitle=Energies%20(Basel)&rft.au=Rana,%20Md%20Masud&rft.date=2022-01-01&rft.volume=15&rft.issue=1&rft.spage=330&rft.pages=330-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15010330&rft_dat=%3Cproquest_doaj_%3E2618221922%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-e155af2eb205eaefff93abc94280b986d086cee6fcbd251d7719e08dc1c55d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618221922&rft_id=info:pmid/&rfr_iscdi=true