Loading…

Feature Intensification Using Perception-Guided Regional Classification for Remote Sensing Image Super-Resolution

In recent years, super-resolution technology has gained widespread attention in the field of remote sensing. Despite advancements, current methods often employ uniform reconstruction techniques across entire remote sensing images, neglecting the inherent variability in spatial frequency distribution...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2024-11, Vol.16 (22), p.4201
Main Authors: Li, Yinghua, Xie, Jingyi, Chi, Kaichen, Zhang, Ying, Dong, Yunyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-ebb0353dd6328e30079f88d73a1831071fedf210058c10afe657362b1a9a6e073
container_end_page
container_issue 22
container_start_page 4201
container_title Remote sensing (Basel, Switzerland)
container_volume 16
creator Li, Yinghua
Xie, Jingyi
Chi, Kaichen
Zhang, Ying
Dong, Yunyun
description In recent years, super-resolution technology has gained widespread attention in the field of remote sensing. Despite advancements, current methods often employ uniform reconstruction techniques across entire remote sensing images, neglecting the inherent variability in spatial frequency distributions, particularly the distinction between high-frequency texture regions and smoother areas, leading to computational inefficiency, which introduces redundant computations and fails to optimize the reconstruction process for regions of higher complexity. To address these issues, we propose the Perception-guided Classification Feature Intensification (PCFI) network. PCFI integrates two key components: a compressed sensing classifier that optimizes speed and performance, and a deep texture interaction fusion module that enhances content interaction and detail extraction. This network mitigates the tendency of Transformers to favor global information over local details, achieving improved image information integration through residual connections across windows. Furthermore, a classifier is employed to segment sub-image blocks prior to super-resolution, enabling efficient large-scale processing. The experimental results on the AID dataset indicate that PCFI achieves state-of-the-art performance, with a PSNR of 30.87 dB and an SSIM of 0.8131, while also delivering a 4.33% improvement in processing speed compared to the second-best method.
doi_str_mv 10.3390/rs16224201
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6845535d518348c2a37a3654913865b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818469640</galeid><doaj_id>oai_doaj_org_article_6845535d518348c2a37a3654913865b2</doaj_id><sourcerecordid>A818469640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ebb0353dd6328e30079f88d73a1831071fedf210058c10afe657362b1a9a6e073</originalsourceid><addsrcrecordid>eNpNkUFr3DAQhU1poSHJpb_A0FvBqaSRZPkYliZZCDSkzVnMSiOjxWttJPvQf19tt7SRDpp5eu9DaJrmE2c3AAP7mgvXQkjB-LvmQrBedFIM4v2b-mNzXcqe1QXAByYvmtc7wmXN1G7nheYSQ3S4xDS3LyXOY_tE2dHxJHT3a_Tk22caa4dTu5mwvPGHlOvdIS3U_jiBanh7wLF265Fy90wlTevJedV8CDgVuv57XjYvd99-bh66x-_3283tY-eEGZaOdjsGCrzXIAwBY_0QjPE9IDfAWc8D-SA4Y8o4zjCQVj1oseM4oCbWw2WzPXN9wr095njA_MsmjPaPkPJoMS_RTWS1kUqB8qqipXECoUfQSg4cjFY7UVmfz6xjTq8rlcXu05rrLxQLHKC6pFTVdXN2jVihcQ5pyejq9nSILs0UYtVvDTdSD1qyGvhyDricSskU_j2TM3saqf0_UvgNLnKRwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133386445</pqid></control><display><type>article</type><title>Feature Intensification Using Perception-Guided Regional Classification for Remote Sensing Image Super-Resolution</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Li, Yinghua ; Xie, Jingyi ; Chi, Kaichen ; Zhang, Ying ; Dong, Yunyun</creator><creatorcontrib>Li, Yinghua ; Xie, Jingyi ; Chi, Kaichen ; Zhang, Ying ; Dong, Yunyun</creatorcontrib><description>In recent years, super-resolution technology has gained widespread attention in the field of remote sensing. Despite advancements, current methods often employ uniform reconstruction techniques across entire remote sensing images, neglecting the inherent variability in spatial frequency distributions, particularly the distinction between high-frequency texture regions and smoother areas, leading to computational inefficiency, which introduces redundant computations and fails to optimize the reconstruction process for regions of higher complexity. To address these issues, we propose the Perception-guided Classification Feature Intensification (PCFI) network. PCFI integrates two key components: a compressed sensing classifier that optimizes speed and performance, and a deep texture interaction fusion module that enhances content interaction and detail extraction. This network mitigates the tendency of Transformers to favor global information over local details, achieving improved image information integration through residual connections across windows. Furthermore, a classifier is employed to segment sub-image blocks prior to super-resolution, enabling efficient large-scale processing. The experimental results on the AID dataset indicate that PCFI achieves state-of-the-art performance, with a PSNR of 30.87 dB and an SSIM of 0.8131, while also delivering a 4.33% improvement in processing speed compared to the second-best method.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs16224201</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Classification ; compressed sensing ; Deep learning ; Frequency dependence ; Image reconstruction ; Image resolution ; Perception ; Processing speed ; Remote sensing ; remote sensing images ; Satellites ; super-resolution ; Texture</subject><ispartof>Remote sensing (Basel, Switzerland), 2024-11, Vol.16 (22), p.4201</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ebb0353dd6328e30079f88d73a1831071fedf210058c10afe657362b1a9a6e073</cites><orcidid>0009-0008-5705-6992 ; 0000-0002-1366-3503 ; 0000-0002-0241-7091 ; 0000-0001-8375-442X ; 0009-0003-2310-7855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133386445/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133386445?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Li, Yinghua</creatorcontrib><creatorcontrib>Xie, Jingyi</creatorcontrib><creatorcontrib>Chi, Kaichen</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Dong, Yunyun</creatorcontrib><title>Feature Intensification Using Perception-Guided Regional Classification for Remote Sensing Image Super-Resolution</title><title>Remote sensing (Basel, Switzerland)</title><description>In recent years, super-resolution technology has gained widespread attention in the field of remote sensing. Despite advancements, current methods often employ uniform reconstruction techniques across entire remote sensing images, neglecting the inherent variability in spatial frequency distributions, particularly the distinction between high-frequency texture regions and smoother areas, leading to computational inefficiency, which introduces redundant computations and fails to optimize the reconstruction process for regions of higher complexity. To address these issues, we propose the Perception-guided Classification Feature Intensification (PCFI) network. PCFI integrates two key components: a compressed sensing classifier that optimizes speed and performance, and a deep texture interaction fusion module that enhances content interaction and detail extraction. This network mitigates the tendency of Transformers to favor global information over local details, achieving improved image information integration through residual connections across windows. Furthermore, a classifier is employed to segment sub-image blocks prior to super-resolution, enabling efficient large-scale processing. The experimental results on the AID dataset indicate that PCFI achieves state-of-the-art performance, with a PSNR of 30.87 dB and an SSIM of 0.8131, while also delivering a 4.33% improvement in processing speed compared to the second-best method.</description><subject>Accuracy</subject><subject>Classification</subject><subject>compressed sensing</subject><subject>Deep learning</subject><subject>Frequency dependence</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Perception</subject><subject>Processing speed</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Satellites</subject><subject>super-resolution</subject><subject>Texture</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFr3DAQhU1poSHJpb_A0FvBqaSRZPkYliZZCDSkzVnMSiOjxWttJPvQf19tt7SRDpp5eu9DaJrmE2c3AAP7mgvXQkjB-LvmQrBedFIM4v2b-mNzXcqe1QXAByYvmtc7wmXN1G7nheYSQ3S4xDS3LyXOY_tE2dHxJHT3a_Tk22caa4dTu5mwvPGHlOvdIS3U_jiBanh7wLF265Fy90wlTevJedV8CDgVuv57XjYvd99-bh66x-_3283tY-eEGZaOdjsGCrzXIAwBY_0QjPE9IDfAWc8D-SA4Y8o4zjCQVj1oseM4oCbWw2WzPXN9wr095njA_MsmjPaPkPJoMS_RTWS1kUqB8qqipXECoUfQSg4cjFY7UVmfz6xjTq8rlcXu05rrLxQLHKC6pFTVdXN2jVihcQ5pyejq9nSILs0UYtVvDTdSD1qyGvhyDricSskU_j2TM3saqf0_UvgNLnKRwQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Li, Yinghua</creator><creator>Xie, Jingyi</creator><creator>Chi, Kaichen</creator><creator>Zhang, Ying</creator><creator>Dong, Yunyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-5705-6992</orcidid><orcidid>https://orcid.org/0000-0002-1366-3503</orcidid><orcidid>https://orcid.org/0000-0002-0241-7091</orcidid><orcidid>https://orcid.org/0000-0001-8375-442X</orcidid><orcidid>https://orcid.org/0009-0003-2310-7855</orcidid></search><sort><creationdate>20241101</creationdate><title>Feature Intensification Using Perception-Guided Regional Classification for Remote Sensing Image Super-Resolution</title><author>Li, Yinghua ; Xie, Jingyi ; Chi, Kaichen ; Zhang, Ying ; Dong, Yunyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ebb0353dd6328e30079f88d73a1831071fedf210058c10afe657362b1a9a6e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>compressed sensing</topic><topic>Deep learning</topic><topic>Frequency dependence</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Perception</topic><topic>Processing speed</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Satellites</topic><topic>super-resolution</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yinghua</creatorcontrib><creatorcontrib>Xie, Jingyi</creatorcontrib><creatorcontrib>Chi, Kaichen</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Dong, Yunyun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yinghua</au><au>Xie, Jingyi</au><au>Chi, Kaichen</au><au>Zhang, Ying</au><au>Dong, Yunyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Intensification Using Perception-Guided Regional Classification for Remote Sensing Image Super-Resolution</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>22</issue><spage>4201</spage><pages>4201-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>In recent years, super-resolution technology has gained widespread attention in the field of remote sensing. Despite advancements, current methods often employ uniform reconstruction techniques across entire remote sensing images, neglecting the inherent variability in spatial frequency distributions, particularly the distinction between high-frequency texture regions and smoother areas, leading to computational inefficiency, which introduces redundant computations and fails to optimize the reconstruction process for regions of higher complexity. To address these issues, we propose the Perception-guided Classification Feature Intensification (PCFI) network. PCFI integrates two key components: a compressed sensing classifier that optimizes speed and performance, and a deep texture interaction fusion module that enhances content interaction and detail extraction. This network mitigates the tendency of Transformers to favor global information over local details, achieving improved image information integration through residual connections across windows. Furthermore, a classifier is employed to segment sub-image blocks prior to super-resolution, enabling efficient large-scale processing. The experimental results on the AID dataset indicate that PCFI achieves state-of-the-art performance, with a PSNR of 30.87 dB and an SSIM of 0.8131, while also delivering a 4.33% improvement in processing speed compared to the second-best method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs16224201</doi><orcidid>https://orcid.org/0009-0008-5705-6992</orcidid><orcidid>https://orcid.org/0000-0002-1366-3503</orcidid><orcidid>https://orcid.org/0000-0002-0241-7091</orcidid><orcidid>https://orcid.org/0000-0001-8375-442X</orcidid><orcidid>https://orcid.org/0009-0003-2310-7855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2024-11, Vol.16 (22), p.4201
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6845535d518348c2a37a3654913865b2
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Classification
compressed sensing
Deep learning
Frequency dependence
Image reconstruction
Image resolution
Perception
Processing speed
Remote sensing
remote sensing images
Satellites
super-resolution
Texture
title Feature Intensification Using Perception-Guided Regional Classification for Remote Sensing Image Super-Resolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Intensification%20Using%20Perception-Guided%20Regional%20Classification%20for%20Remote%20Sensing%20Image%20Super-Resolution&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Li,%20Yinghua&rft.date=2024-11-01&rft.volume=16&rft.issue=22&rft.spage=4201&rft.pages=4201-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs16224201&rft_dat=%3Cgale_doaj_%3EA818469640%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ebb0353dd6328e30079f88d73a1831071fedf210058c10afe657362b1a9a6e073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133386445&rft_id=info:pmid/&rft_galeid=A818469640&rfr_iscdi=true