Loading…

Universal Qudit Gate Synthesis for Transmons

Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using d-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we desi...

Full description

Saved in:
Bibliographic Details
Published in:PRX quantum 2023-08, Vol.4 (3), p.030327, Article 030327
Main Authors: Fischer, Laurin E., Chiesa, Alessandro, Tacchino, Francesco, Egger, Daniel J., Carretta, Stefano, Tavernelli, Ivano
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-2ceea737de4f2368a7aa4c26aacb2bd3c5a0cee46c4ce8726e4c0637f5926cb53
cites cdi_FETCH-LOGICAL-c360t-2ceea737de4f2368a7aa4c26aacb2bd3c5a0cee46c4ce8726e4c0637f5926cb53
container_end_page
container_issue 3
container_start_page 030327
container_title PRX quantum
container_volume 4
creator Fischer, Laurin E.
Chiesa, Alessandro
Tacchino, Francesco
Egger, Daniel J.
Carretta, Stefano
Tavernelli, Ivano
description Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using d-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we design a superconducting qudit-based quantum processor wherein the logical space of transmon qubits is extended to higher-excited levels. We propose a universal gate set featuring a two-qudit cross-resonance entangling gate, for which we predict fidelities beyond 99% in the d=4 case of ququarts with realistic experimental parameters. Furthermore, we present a decomposition routine that compiles general qudit unitaries into these elementary gates, requiring fewer entangling gates than qubit alternatives. As proof-of-concept applications, we numerically demonstrate the synthesis of SU(16) gates for noisy quantum hardware and an embedded error-correction sequence that encodes a qubit memory in a transmon ququart to protect against pure dephasing noise. We conclude that universal qudit control—a valuable extension to the operational toolbox of superconducting quantum information processing—is within reach of current transmon-based architectures and has applications to near-term and long-term hardware.
doi_str_mv 10.1103/PRXQuantum.4.030327
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_685f70b2cf8a42b8830021791bed1bde</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_685f70b2cf8a42b8830021791bed1bde</doaj_id><sourcerecordid>oai_doaj_org_article_685f70b2cf8a42b8830021791bed1bde</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-2ceea737de4f2368a7aa4c26aacb2bd3c5a0cee46c4ce8726e4c0637f5926cb53</originalsourceid><addsrcrecordid>eNpNkNFKAzEQRYMoWGq_wJf9ALcmmWyy-yhFa6Gg1RZ8C5PsRLe0u5Jshf691Yr6NJfhcuAexi4FHwvB4frx6WWxw7bfbcdqzIGDNCdsIHUlcoCqOv2Xz9kopTXnXBYChKoG7GrVNh8UE26yxa5u-myKPWXP-7Z_o9SkLHQxW0Zs07Zr0wU7C7hJNPq5Q7a6u11O7vP5w3Q2uZnnHjTvc-mJ0ICpSQUJukSDqLzUiN5JV4MvkB8qSnvlqTRSk_JcgwlFJbV3BQzZ7MitO1zb99hsMe5th439fnTx1WLsG78hq8siGO6kDyUq6coSDuOEqYSjWriaDiw4snzsUooUfnmC2y9_9s-fVfboDz4BHfJl6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universal Qudit Gate Synthesis for Transmons</title><source>DOAJ Directory of Open Access Journals</source><creator>Fischer, Laurin E. ; Chiesa, Alessandro ; Tacchino, Francesco ; Egger, Daniel J. ; Carretta, Stefano ; Tavernelli, Ivano</creator><creatorcontrib>Fischer, Laurin E. ; Chiesa, Alessandro ; Tacchino, Francesco ; Egger, Daniel J. ; Carretta, Stefano ; Tavernelli, Ivano</creatorcontrib><description>Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using d-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we design a superconducting qudit-based quantum processor wherein the logical space of transmon qubits is extended to higher-excited levels. We propose a universal gate set featuring a two-qudit cross-resonance entangling gate, for which we predict fidelities beyond 99% in the d=4 case of ququarts with realistic experimental parameters. Furthermore, we present a decomposition routine that compiles general qudit unitaries into these elementary gates, requiring fewer entangling gates than qubit alternatives. As proof-of-concept applications, we numerically demonstrate the synthesis of SU(16) gates for noisy quantum hardware and an embedded error-correction sequence that encodes a qubit memory in a transmon ququart to protect against pure dephasing noise. We conclude that universal qudit control—a valuable extension to the operational toolbox of superconducting quantum information processing—is within reach of current transmon-based architectures and has applications to near-term and long-term hardware.</description><identifier>ISSN: 2691-3399</identifier><identifier>EISSN: 2691-3399</identifier><identifier>DOI: 10.1103/PRXQuantum.4.030327</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>PRX quantum, 2023-08, Vol.4 (3), p.030327, Article 030327</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-2ceea737de4f2368a7aa4c26aacb2bd3c5a0cee46c4ce8726e4c0637f5926cb53</citedby><cites>FETCH-LOGICAL-c360t-2ceea737de4f2368a7aa4c26aacb2bd3c5a0cee46c4ce8726e4c0637f5926cb53</cites><orcidid>0000-0003-2955-3998 ; 0000-0002-4557-8418 ; 0000-0002-5523-9807 ; 0000-0003-2008-5956 ; 0000-0002-2536-1326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,27923,27924</link.rule.ids></links><search><creatorcontrib>Fischer, Laurin E.</creatorcontrib><creatorcontrib>Chiesa, Alessandro</creatorcontrib><creatorcontrib>Tacchino, Francesco</creatorcontrib><creatorcontrib>Egger, Daniel J.</creatorcontrib><creatorcontrib>Carretta, Stefano</creatorcontrib><creatorcontrib>Tavernelli, Ivano</creatorcontrib><title>Universal Qudit Gate Synthesis for Transmons</title><title>PRX quantum</title><description>Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using d-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we design a superconducting qudit-based quantum processor wherein the logical space of transmon qubits is extended to higher-excited levels. We propose a universal gate set featuring a two-qudit cross-resonance entangling gate, for which we predict fidelities beyond 99% in the d=4 case of ququarts with realistic experimental parameters. Furthermore, we present a decomposition routine that compiles general qudit unitaries into these elementary gates, requiring fewer entangling gates than qubit alternatives. As proof-of-concept applications, we numerically demonstrate the synthesis of SU(16) gates for noisy quantum hardware and an embedded error-correction sequence that encodes a qubit memory in a transmon ququart to protect against pure dephasing noise. We conclude that universal qudit control—a valuable extension to the operational toolbox of superconducting quantum information processing—is within reach of current transmon-based architectures and has applications to near-term and long-term hardware.</description><issn>2691-3399</issn><issn>2691-3399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNFKAzEQRYMoWGq_wJf9ALcmmWyy-yhFa6Gg1RZ8C5PsRLe0u5Jshf691Yr6NJfhcuAexi4FHwvB4frx6WWxw7bfbcdqzIGDNCdsIHUlcoCqOv2Xz9kopTXnXBYChKoG7GrVNh8UE26yxa5u-myKPWXP-7Z_o9SkLHQxW0Zs07Zr0wU7C7hJNPq5Q7a6u11O7vP5w3Q2uZnnHjTvc-mJ0ICpSQUJukSDqLzUiN5JV4MvkB8qSnvlqTRSk_JcgwlFJbV3BQzZ7MitO1zb99hsMe5th439fnTx1WLsG78hq8siGO6kDyUq6coSDuOEqYSjWriaDiw4snzsUooUfnmC2y9_9s-fVfboDz4BHfJl6Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Fischer, Laurin E.</creator><creator>Chiesa, Alessandro</creator><creator>Tacchino, Francesco</creator><creator>Egger, Daniel J.</creator><creator>Carretta, Stefano</creator><creator>Tavernelli, Ivano</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2955-3998</orcidid><orcidid>https://orcid.org/0000-0002-4557-8418</orcidid><orcidid>https://orcid.org/0000-0002-5523-9807</orcidid><orcidid>https://orcid.org/0000-0003-2008-5956</orcidid><orcidid>https://orcid.org/0000-0002-2536-1326</orcidid></search><sort><creationdate>20230801</creationdate><title>Universal Qudit Gate Synthesis for Transmons</title><author>Fischer, Laurin E. ; Chiesa, Alessandro ; Tacchino, Francesco ; Egger, Daniel J. ; Carretta, Stefano ; Tavernelli, Ivano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-2ceea737de4f2368a7aa4c26aacb2bd3c5a0cee46c4ce8726e4c0637f5926cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Laurin E.</creatorcontrib><creatorcontrib>Chiesa, Alessandro</creatorcontrib><creatorcontrib>Tacchino, Francesco</creatorcontrib><creatorcontrib>Egger, Daniel J.</creatorcontrib><creatorcontrib>Carretta, Stefano</creatorcontrib><creatorcontrib>Tavernelli, Ivano</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PRX quantum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Laurin E.</au><au>Chiesa, Alessandro</au><au>Tacchino, Francesco</au><au>Egger, Daniel J.</au><au>Carretta, Stefano</au><au>Tavernelli, Ivano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Qudit Gate Synthesis for Transmons</atitle><jtitle>PRX quantum</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>030327</spage><pages>030327-</pages><artnum>030327</artnum><issn>2691-3399</issn><eissn>2691-3399</eissn><abstract>Gate-based quantum computers typically encode and process information in two-dimensional units called qubits. Using d-dimensional qudits instead may offer intrinsic advantages, including more efficient circuit synthesis, problem-tailored encodings and embedded error correction. In this work, we design a superconducting qudit-based quantum processor wherein the logical space of transmon qubits is extended to higher-excited levels. We propose a universal gate set featuring a two-qudit cross-resonance entangling gate, for which we predict fidelities beyond 99% in the d=4 case of ququarts with realistic experimental parameters. Furthermore, we present a decomposition routine that compiles general qudit unitaries into these elementary gates, requiring fewer entangling gates than qubit alternatives. As proof-of-concept applications, we numerically demonstrate the synthesis of SU(16) gates for noisy quantum hardware and an embedded error-correction sequence that encodes a qubit memory in a transmon ququart to protect against pure dephasing noise. We conclude that universal qudit control—a valuable extension to the operational toolbox of superconducting quantum information processing—is within reach of current transmon-based architectures and has applications to near-term and long-term hardware.</abstract><pub>American Physical Society</pub><doi>10.1103/PRXQuantum.4.030327</doi><orcidid>https://orcid.org/0000-0003-2955-3998</orcidid><orcidid>https://orcid.org/0000-0002-4557-8418</orcidid><orcidid>https://orcid.org/0000-0002-5523-9807</orcidid><orcidid>https://orcid.org/0000-0003-2008-5956</orcidid><orcidid>https://orcid.org/0000-0002-2536-1326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2691-3399
ispartof PRX quantum, 2023-08, Vol.4 (3), p.030327, Article 030327
issn 2691-3399
2691-3399
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_685f70b2cf8a42b8830021791bed1bde
source DOAJ Directory of Open Access Journals
title Universal Qudit Gate Synthesis for Transmons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Qudit%20Gate%20Synthesis%20for%20Transmons&rft.jtitle=PRX%20quantum&rft.au=Fischer,%20Laurin%20E.&rft.date=2023-08-01&rft.volume=4&rft.issue=3&rft.spage=030327&rft.pages=030327-&rft.artnum=030327&rft.issn=2691-3399&rft.eissn=2691-3399&rft_id=info:doi/10.1103/PRXQuantum.4.030327&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_685f70b2cf8a42b8830021791bed1bde%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-2ceea737de4f2368a7aa4c26aacb2bd3c5a0cee46c4ce8726e4c0637f5926cb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true