Loading…
Magnetic field of the Hot Earth. Reversals, magnetic anomalies and mechanism of the magnetic poles drift
Principally new model of the magnetic field of the Hot Earth is proposed. Unlike the commonly accepted approach which considers that the Earth’s temperature doesn’t increase because heat released under selfgravitation is removed through radiation our model assumes that early substance of the Earth h...
Saved in:
Published in: | E3S web of conferences 2019-01, Vol.127, p.2014 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Principally new model of the magnetic field of the Hot Earth is proposed. Unlike the commonly accepted approach which considers that the Earth’s temperature doesn’t increase because heat released under selfgravitation is removed through radiation our model assumes that early substance of the Earth heated up to 30 000 K was a superheated and overcompressed vapour.
Cooling the Earth substance was condensing. The system was expanding adiabatically that governed the character of the Earth enlargement. This scheme origins from the phase transition (PT) of condensation-evaporation under the benefit of condensation. PT provides the heat, geodynamics of expansion and the Earth’s magnetic field (EMF).
The high temperature of the substance causes its thermoionization, whereas PT operation relating to mass transfer initiates charges separation and generation of the double electric layer (DEL). A diurnal rotation of DEL induces a weak initial EMF which enhances then at the expense of the Hall dynamo (Hall current) inside PT area. The benefit of evaporation causes the Earth compression and reversal of the EMF polarity.
The approach we develop provides an insight into features of the magnetic field of the planets and satellites at the Sun system. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/201912702014 |