Loading…

Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome

The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the we...

Full description

Saved in:
Bibliographic Details
Published in:Microbiology spectrum 2024-07, Vol.12 (7), p.e0410823
Main Authors: Martiny, Hannah-Marie, Munk, Patrick, Brinch, Christian, Aarestrup, Frank M, Calle, M Luz, Petersen, Thomas N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83
container_end_page
container_issue 7
container_start_page e0410823
container_title Microbiology spectrum
container_volume 12
creator Martiny, Hannah-Marie
Munk, Patrick
Brinch, Christian
Aarestrup, Frank M
Calle, M Luz
Petersen, Thomas N
description The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙10 read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs. Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.
doi_str_mv 10.1128/spectrum.04108-23
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68708fe9aa534a49b522e66a18114e17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68708fe9aa534a49b522e66a18114e17</doaj_id><sourcerecordid>3064582531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpD-CCcuSSxWPHjnNCqOKjUiUu9GxNnMnWq8RebAep_Hq83W3VXjh55HnfZzwzrqr3wDYAXH9Ke7I5rsuGtcB0w8Wr6pyDkg1r--71s_isukxpxxgDYJJL_rY6E1oLrvv-vFpus5vdX-e3tQ0NDqsf0VtKdZhq9NktzsYwOJzrSMmlfEjWW_JFkUPtRiqa6b7eh3yIiqxQEs3laS742vk639HJGhZ6V72ZcE50eTovqttvX39d_Whufn6_vvpy06DQXW5IaqVG2StUVo9DD1LBNJRg0gi2Y2ySxLXVHcHQdtJOgKPgHesPJhy0uKiuj9wx4M7so1sw3puAzjxchLg1GLOzMxmlO6Yn6hGlaLHtB8k5KYWgAVqCrrA-H1n7dVhotKXPiPML6MuMd3dmG_6YsiXQkolC-HgixPB7pZTN4pKleUZPYU1GMNVKzaWAIoWjtEw9pUjTUx1gB6A2j2s3D2s3_IDfHD2YFm52YY2-zPa_hg_PO3oq8fgrxD_vhry2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064582531</pqid></control><display><type>article</type><title>Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome</title><source>PubMed Central(OA)</source><source>American Society for Microbiology Journals</source><creator>Martiny, Hannah-Marie ; Munk, Patrick ; Brinch, Christian ; Aarestrup, Frank M ; Calle, M Luz ; Petersen, Thomas N</creator><contributor>Garcia-Solache, Monica Adriana</contributor><creatorcontrib>Martiny, Hannah-Marie ; Munk, Patrick ; Brinch, Christian ; Aarestrup, Frank M ; Calle, M Luz ; Petersen, Thomas N ; Garcia-Solache, Monica Adriana</creatorcontrib><description>The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙10 read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs. Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.</description><identifier>ISSN: 2165-0497</identifier><identifier>EISSN: 2165-0497</identifier><identifier>DOI: 10.1128/spectrum.04108-23</identifier><identifier>PMID: 38832899</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; antimicrobial resistance ; Bacteria - classification ; Bacteria - drug effects ; Bacteria - genetics ; co-abundances ; compositional data analysis ; Computational Biology ; correlation ; Drug Resistance, Bacterial - genetics ; Genes, Bacterial - genetics ; High-Throughput Nucleotide Sequencing ; Humans ; Metagenome - genetics ; Metagenomics ; network analysis ; Research Article ; Soil Microbiology</subject><ispartof>Microbiology spectrum, 2024-07, Vol.12 (7), p.e0410823</ispartof><rights>Copyright © 2024 Martiny et al.</rights><rights>Copyright © 2024 Martiny et al. 2024 Martiny et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83</cites><orcidid>0000-0002-7116-2723 ; 0000-0001-6733-7888 ; 0000-0002-5074-7183 ; 0000-0001-8813-4019 ; 0000-0001-9334-415X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/spectrum.04108-23$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/spectrum.04108-23$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,27924,27925,52751,52752,52753,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38832899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Garcia-Solache, Monica Adriana</contributor><creatorcontrib>Martiny, Hannah-Marie</creatorcontrib><creatorcontrib>Munk, Patrick</creatorcontrib><creatorcontrib>Brinch, Christian</creatorcontrib><creatorcontrib>Aarestrup, Frank M</creatorcontrib><creatorcontrib>Calle, M Luz</creatorcontrib><creatorcontrib>Petersen, Thomas N</creatorcontrib><title>Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome</title><title>Microbiology spectrum</title><addtitle>Spectrum</addtitle><addtitle>Microbiol Spectr</addtitle><description>The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙10 read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs. Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antimicrobial resistance</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>co-abundances</subject><subject>compositional data analysis</subject><subject>Computational Biology</subject><subject>correlation</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Genes, Bacterial - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>network analysis</subject><subject>Research Article</subject><subject>Soil Microbiology</subject><issn>2165-0497</issn><issn>2165-0497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpD-CCcuSSxWPHjnNCqOKjUiUu9GxNnMnWq8RebAep_Hq83W3VXjh55HnfZzwzrqr3wDYAXH9Ke7I5rsuGtcB0w8Wr6pyDkg1r--71s_isukxpxxgDYJJL_rY6E1oLrvv-vFpus5vdX-e3tQ0NDqsf0VtKdZhq9NktzsYwOJzrSMmlfEjWW_JFkUPtRiqa6b7eh3yIiqxQEs3laS742vk639HJGhZ6V72ZcE50eTovqttvX39d_Whufn6_vvpy06DQXW5IaqVG2StUVo9DD1LBNJRg0gi2Y2ySxLXVHcHQdtJOgKPgHesPJhy0uKiuj9wx4M7so1sw3puAzjxchLg1GLOzMxmlO6Yn6hGlaLHtB8k5KYWgAVqCrrA-H1n7dVhotKXPiPML6MuMd3dmG_6YsiXQkolC-HgixPB7pZTN4pKleUZPYU1GMNVKzaWAIoWjtEw9pUjTUx1gB6A2j2s3D2s3_IDfHD2YFm52YY2-zPa_hg_PO3oq8fgrxD_vhry2</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Martiny, Hannah-Marie</creator><creator>Munk, Patrick</creator><creator>Brinch, Christian</creator><creator>Aarestrup, Frank M</creator><creator>Calle, M Luz</creator><creator>Petersen, Thomas N</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7116-2723</orcidid><orcidid>https://orcid.org/0000-0001-6733-7888</orcidid><orcidid>https://orcid.org/0000-0002-5074-7183</orcidid><orcidid>https://orcid.org/0000-0001-8813-4019</orcidid><orcidid>https://orcid.org/0000-0001-9334-415X</orcidid></search><sort><creationdate>20240702</creationdate><title>Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome</title><author>Martiny, Hannah-Marie ; Munk, Patrick ; Brinch, Christian ; Aarestrup, Frank M ; Calle, M Luz ; Petersen, Thomas N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antimicrobial resistance</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>co-abundances</topic><topic>compositional data analysis</topic><topic>Computational Biology</topic><topic>correlation</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Genes, Bacterial - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>network analysis</topic><topic>Research Article</topic><topic>Soil Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martiny, Hannah-Marie</creatorcontrib><creatorcontrib>Munk, Patrick</creatorcontrib><creatorcontrib>Brinch, Christian</creatorcontrib><creatorcontrib>Aarestrup, Frank M</creatorcontrib><creatorcontrib>Calle, M Luz</creatorcontrib><creatorcontrib>Petersen, Thomas N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microbiology spectrum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martiny, Hannah-Marie</au><au>Munk, Patrick</au><au>Brinch, Christian</au><au>Aarestrup, Frank M</au><au>Calle, M Luz</au><au>Petersen, Thomas N</au><au>Garcia-Solache, Monica Adriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome</atitle><jtitle>Microbiology spectrum</jtitle><stitle>Spectrum</stitle><addtitle>Microbiol Spectr</addtitle><date>2024-07-02</date><risdate>2024</risdate><volume>12</volume><issue>7</issue><spage>e0410823</spage><pages>e0410823-</pages><issn>2165-0497</issn><eissn>2165-0497</eissn><abstract>The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙10 read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs. Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>38832899</pmid><doi>10.1128/spectrum.04108-23</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7116-2723</orcidid><orcidid>https://orcid.org/0000-0001-6733-7888</orcidid><orcidid>https://orcid.org/0000-0002-5074-7183</orcidid><orcidid>https://orcid.org/0000-0001-8813-4019</orcidid><orcidid>https://orcid.org/0000-0001-9334-415X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2165-0497
ispartof Microbiology spectrum, 2024-07, Vol.12 (7), p.e0410823
issn 2165-0497
2165-0497
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_68708fe9aa534a49b522e66a18114e17
source PubMed Central(OA); American Society for Microbiology Journals
subjects Animals
Anti-Bacterial Agents - pharmacology
antimicrobial resistance
Bacteria - classification
Bacteria - drug effects
Bacteria - genetics
co-abundances
compositional data analysis
Computational Biology
correlation
Drug Resistance, Bacterial - genetics
Genes, Bacterial - genetics
High-Throughput Nucleotide Sequencing
Humans
Metagenome - genetics
Metagenomics
network analysis
Research Article
Soil Microbiology
title Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20co-abundances%20of%20antimicrobial%20resistance%20genes%20to%20identify%20potential%20co-selection%20in%20the%20resistome&rft.jtitle=Microbiology%20spectrum&rft.au=Martiny,%20Hannah-Marie&rft.date=2024-07-02&rft.volume=12&rft.issue=7&rft.spage=e0410823&rft.pages=e0410823-&rft.issn=2165-0497&rft.eissn=2165-0497&rft_id=info:doi/10.1128/spectrum.04108-23&rft_dat=%3Cproquest_doaj_%3E3064582531%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064582531&rft_id=info:pmid/38832899&rfr_iscdi=true