Loading…
Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome
The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the we...
Saved in:
Published in: | Microbiology spectrum 2024-07, Vol.12 (7), p.e0410823 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83 |
container_end_page | |
container_issue | 7 |
container_start_page | e0410823 |
container_title | Microbiology spectrum |
container_volume | 12 |
creator | Martiny, Hannah-Marie Munk, Patrick Brinch, Christian Aarestrup, Frank M Calle, M Luz Petersen, Thomas N |
description | The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙10
read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs.
Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings. |
doi_str_mv | 10.1128/spectrum.04108-23 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68708fe9aa534a49b522e66a18114e17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68708fe9aa534a49b522e66a18114e17</doaj_id><sourcerecordid>3064582531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpD-CCcuSSxWPHjnNCqOKjUiUu9GxNnMnWq8RebAep_Hq83W3VXjh55HnfZzwzrqr3wDYAXH9Ke7I5rsuGtcB0w8Wr6pyDkg1r--71s_isukxpxxgDYJJL_rY6E1oLrvv-vFpus5vdX-e3tQ0NDqsf0VtKdZhq9NktzsYwOJzrSMmlfEjWW_JFkUPtRiqa6b7eh3yIiqxQEs3laS742vk639HJGhZ6V72ZcE50eTovqttvX39d_Whufn6_vvpy06DQXW5IaqVG2StUVo9DD1LBNJRg0gi2Y2ySxLXVHcHQdtJOgKPgHesPJhy0uKiuj9wx4M7so1sw3puAzjxchLg1GLOzMxmlO6Yn6hGlaLHtB8k5KYWgAVqCrrA-H1n7dVhotKXPiPML6MuMd3dmG_6YsiXQkolC-HgixPB7pZTN4pKleUZPYU1GMNVKzaWAIoWjtEw9pUjTUx1gB6A2j2s3D2s3_IDfHD2YFm52YY2-zPa_hg_PO3oq8fgrxD_vhry2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064582531</pqid></control><display><type>article</type><title>Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome</title><source>PubMed Central(OA)</source><source>American Society for Microbiology Journals</source><creator>Martiny, Hannah-Marie ; Munk, Patrick ; Brinch, Christian ; Aarestrup, Frank M ; Calle, M Luz ; Petersen, Thomas N</creator><contributor>Garcia-Solache, Monica Adriana</contributor><creatorcontrib>Martiny, Hannah-Marie ; Munk, Patrick ; Brinch, Christian ; Aarestrup, Frank M ; Calle, M Luz ; Petersen, Thomas N ; Garcia-Solache, Monica Adriana</creatorcontrib><description>The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙10
read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs.
Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.</description><identifier>ISSN: 2165-0497</identifier><identifier>EISSN: 2165-0497</identifier><identifier>DOI: 10.1128/spectrum.04108-23</identifier><identifier>PMID: 38832899</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; antimicrobial resistance ; Bacteria - classification ; Bacteria - drug effects ; Bacteria - genetics ; co-abundances ; compositional data analysis ; Computational Biology ; correlation ; Drug Resistance, Bacterial - genetics ; Genes, Bacterial - genetics ; High-Throughput Nucleotide Sequencing ; Humans ; Metagenome - genetics ; Metagenomics ; network analysis ; Research Article ; Soil Microbiology</subject><ispartof>Microbiology spectrum, 2024-07, Vol.12 (7), p.e0410823</ispartof><rights>Copyright © 2024 Martiny et al.</rights><rights>Copyright © 2024 Martiny et al. 2024 Martiny et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83</cites><orcidid>0000-0002-7116-2723 ; 0000-0001-6733-7888 ; 0000-0002-5074-7183 ; 0000-0001-8813-4019 ; 0000-0001-9334-415X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/spectrum.04108-23$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/spectrum.04108-23$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,27924,27925,52751,52752,52753,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38832899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Garcia-Solache, Monica Adriana</contributor><creatorcontrib>Martiny, Hannah-Marie</creatorcontrib><creatorcontrib>Munk, Patrick</creatorcontrib><creatorcontrib>Brinch, Christian</creatorcontrib><creatorcontrib>Aarestrup, Frank M</creatorcontrib><creatorcontrib>Calle, M Luz</creatorcontrib><creatorcontrib>Petersen, Thomas N</creatorcontrib><title>Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome</title><title>Microbiology spectrum</title><addtitle>Spectrum</addtitle><addtitle>Microbiol Spectr</addtitle><description>The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙10
read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs.
Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antimicrobial resistance</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>co-abundances</subject><subject>compositional data analysis</subject><subject>Computational Biology</subject><subject>correlation</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Genes, Bacterial - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>network analysis</subject><subject>Research Article</subject><subject>Soil Microbiology</subject><issn>2165-0497</issn><issn>2165-0497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpD-CCcuSSxWPHjnNCqOKjUiUu9GxNnMnWq8RebAep_Hq83W3VXjh55HnfZzwzrqr3wDYAXH9Ke7I5rsuGtcB0w8Wr6pyDkg1r--71s_isukxpxxgDYJJL_rY6E1oLrvv-vFpus5vdX-e3tQ0NDqsf0VtKdZhq9NktzsYwOJzrSMmlfEjWW_JFkUPtRiqa6b7eh3yIiqxQEs3laS742vk639HJGhZ6V72ZcE50eTovqttvX39d_Whufn6_vvpy06DQXW5IaqVG2StUVo9DD1LBNJRg0gi2Y2ySxLXVHcHQdtJOgKPgHesPJhy0uKiuj9wx4M7so1sw3puAzjxchLg1GLOzMxmlO6Yn6hGlaLHtB8k5KYWgAVqCrrA-H1n7dVhotKXPiPML6MuMd3dmG_6YsiXQkolC-HgixPB7pZTN4pKleUZPYU1GMNVKzaWAIoWjtEw9pUjTUx1gB6A2j2s3D2s3_IDfHD2YFm52YY2-zPa_hg_PO3oq8fgrxD_vhry2</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Martiny, Hannah-Marie</creator><creator>Munk, Patrick</creator><creator>Brinch, Christian</creator><creator>Aarestrup, Frank M</creator><creator>Calle, M Luz</creator><creator>Petersen, Thomas N</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7116-2723</orcidid><orcidid>https://orcid.org/0000-0001-6733-7888</orcidid><orcidid>https://orcid.org/0000-0002-5074-7183</orcidid><orcidid>https://orcid.org/0000-0001-8813-4019</orcidid><orcidid>https://orcid.org/0000-0001-9334-415X</orcidid></search><sort><creationdate>20240702</creationdate><title>Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome</title><author>Martiny, Hannah-Marie ; Munk, Patrick ; Brinch, Christian ; Aarestrup, Frank M ; Calle, M Luz ; Petersen, Thomas N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antimicrobial resistance</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>co-abundances</topic><topic>compositional data analysis</topic><topic>Computational Biology</topic><topic>correlation</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Genes, Bacterial - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>network analysis</topic><topic>Research Article</topic><topic>Soil Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martiny, Hannah-Marie</creatorcontrib><creatorcontrib>Munk, Patrick</creatorcontrib><creatorcontrib>Brinch, Christian</creatorcontrib><creatorcontrib>Aarestrup, Frank M</creatorcontrib><creatorcontrib>Calle, M Luz</creatorcontrib><creatorcontrib>Petersen, Thomas N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microbiology spectrum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martiny, Hannah-Marie</au><au>Munk, Patrick</au><au>Brinch, Christian</au><au>Aarestrup, Frank M</au><au>Calle, M Luz</au><au>Petersen, Thomas N</au><au>Garcia-Solache, Monica Adriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome</atitle><jtitle>Microbiology spectrum</jtitle><stitle>Spectrum</stitle><addtitle>Microbiol Spectr</addtitle><date>2024-07-02</date><risdate>2024</risdate><volume>12</volume><issue>7</issue><spage>e0410823</spage><pages>e0410823-</pages><issn>2165-0497</issn><eissn>2165-0497</eissn><abstract>The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙10
read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs.
Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>38832899</pmid><doi>10.1128/spectrum.04108-23</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7116-2723</orcidid><orcidid>https://orcid.org/0000-0001-6733-7888</orcidid><orcidid>https://orcid.org/0000-0002-5074-7183</orcidid><orcidid>https://orcid.org/0000-0001-8813-4019</orcidid><orcidid>https://orcid.org/0000-0001-9334-415X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2165-0497 |
ispartof | Microbiology spectrum, 2024-07, Vol.12 (7), p.e0410823 |
issn | 2165-0497 2165-0497 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_68708fe9aa534a49b522e66a18114e17 |
source | PubMed Central(OA); American Society for Microbiology Journals |
subjects | Animals Anti-Bacterial Agents - pharmacology antimicrobial resistance Bacteria - classification Bacteria - drug effects Bacteria - genetics co-abundances compositional data analysis Computational Biology correlation Drug Resistance, Bacterial - genetics Genes, Bacterial - genetics High-Throughput Nucleotide Sequencing Humans Metagenome - genetics Metagenomics network analysis Research Article Soil Microbiology |
title | Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20co-abundances%20of%20antimicrobial%20resistance%20genes%20to%20identify%20potential%20co-selection%20in%20the%20resistome&rft.jtitle=Microbiology%20spectrum&rft.au=Martiny,%20Hannah-Marie&rft.date=2024-07-02&rft.volume=12&rft.issue=7&rft.spage=e0410823&rft.pages=e0410823-&rft.issn=2165-0497&rft.eissn=2165-0497&rft_id=info:doi/10.1128/spectrum.04108-23&rft_dat=%3Cproquest_doaj_%3E3064582531%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a387t-e5866d596a6c8db91561fbdb9f8a1c700f5e28c87e1b475cf1ad327096d59ab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064582531&rft_id=info:pmid/38832899&rfr_iscdi=true |