Loading…
New ECOSTRESS and MODIS Land Surface Temperature Data Reveal Fine-Scale Heat Vulnerability in Cities: A Case Study for Los Angeles County, California
Rapid 21st century urbanization combined with anthropogenic climate warming are significantly increasing heat-related health threats in cities worldwide. In Los Angeles (LA), increasing trends in extreme heat are expected to intensify and exacerbate the urban heat island effect, leading to greater h...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2019-09, Vol.11 (18), p.2136 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rapid 21st century urbanization combined with anthropogenic climate warming are significantly increasing heat-related health threats in cities worldwide. In Los Angeles (LA), increasing trends in extreme heat are expected to intensify and exacerbate the urban heat island effect, leading to greater health risks for vulnerable populations. Partnerships between city policymakers and scientists are becoming more important as the need to provide data-driven recommendations for sustainability and mitigation efforts becomes critical. Here we present a model to produce heat vulnerability index (HVI) maps driven by surface temperature data from National Aeronautics and Space Administration’s (NASA) new Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) thermal infrared sensor. ECOSTRESS was launched in June 2018 with the capability to image fine-scale urban temperatures at a 70 m resolution throughout different times of the day and night. The HVI model further includes information on socio-demographic data, green vegetation abundance, and historical heatwave temperatures from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Aqua spacecraft since 2002. During a period of high heat in July 2018, we identified the five most vulnerable communities at a sub-city block scale in the LA region. The persistence of high HVI throughout the day and night in these areas indicates a clear and urgent need for implementing cooling technologies and green infrastructure to curb future warming. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs11182136 |