Loading…

Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining

Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior t...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-06, Vol.22 (11), p.4267
Main Authors: Stradovnik, Saša, Hace, Aleš
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23
cites cdi_FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23
container_end_page
container_issue 11
container_start_page 4267
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Stradovnik, Saša
Hace, Aleš
description Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace.
doi_str_mv 10.3390/s22114267
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_688db317ba2c44849f7a0d25887f4709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728856129</galeid><doaj_id>oai_doaj_org_article_688db317ba2c44849f7a0d25887f4709</doaj_id><sourcerecordid>A728856129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgkOLYTuy9IFVLCxVFldDeLX-Md70k8WInlfj3zHbLqkVzsOV5_Hre8VTV24aec76gnwpjTSNYJ59Vp7iKWjFGnz_an1SvStlSyjjn6mV1wttOCaXUaaVXpvyqb3OEcQJPLu9MP5spppGkQKYNkCswJdoeyPc4woApR77EDG7PmJ4szc7Y2McpQiEhZfIz2TSRH8Zt4hjH9evqRTB9gTcP61m1urpcLb_VN7dfr5cXN7VrqZpq36EFwRV4GsC6VjgpbDBOOuegk8Fb17S-aYIM1KIrZXnovBPCCdk5xs-q64OsT2ardzkOJv_RyUR9f5DyWpuMtfegO6W85Y20huF9JRZBGupZq5QMQtIFan0-aO1mO4B32Jls-ieiTzNj3Oh1utOLRrWt5Cjw4UEgp98zlEkPsTjoezNCmovGj2q7hsoFRfT9f-g2zRkbe08JQSUGUucHam3QQBxDwncdhochujRCiHh-IZlSKMz2Fj4eLricSskQjtU3VO9HRh9HBtl3j-0eyX8zwv8Cx6e72A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674407070</pqid></control><display><type>article</type><title>Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Stradovnik, Saša ; Hace, Aleš</creator><creatorcontrib>Stradovnik, Saša ; Hace, Aleš</creatorcontrib><description>Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22114267</identifier><identifier>PMID: 35684888</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Angular velocity ; Collaboration ; Control systems ; Decomposition ; End effectors ; Feasibility ; Industrial robots ; kinematic performance evaluation ; Kinematics ; Machining ; manipulability index ; manipulability polytope ; Methods ; Optimization ; Robot arms ; Robot dynamics ; robot surface machining ; Robotics ; Robots ; Small &amp; medium sized enterprises-SME ; task feasibility ; task-dependent kinematic capability ; Technology application ; Velocity</subject><ispartof>Sensors (Basel, Switzerland), 2022-06, Vol.22 (11), p.4267</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23</citedby><cites>FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23</cites><orcidid>0000-0003-4802-168X ; 0000-0002-3488-2326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2674407070/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2674407070?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35684888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stradovnik, Saša</creatorcontrib><creatorcontrib>Hace, Aleš</creatorcontrib><title>Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Collaboration</subject><subject>Control systems</subject><subject>Decomposition</subject><subject>End effectors</subject><subject>Feasibility</subject><subject>Industrial robots</subject><subject>kinematic performance evaluation</subject><subject>Kinematics</subject><subject>Machining</subject><subject>manipulability index</subject><subject>manipulability polytope</subject><subject>Methods</subject><subject>Optimization</subject><subject>Robot arms</subject><subject>Robot dynamics</subject><subject>robot surface machining</subject><subject>Robotics</subject><subject>Robots</subject><subject>Small &amp; medium sized enterprises-SME</subject><subject>task feasibility</subject><subject>task-dependent kinematic capability</subject><subject>Technology application</subject><subject>Velocity</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgkOLYTuy9IFVLCxVFldDeLX-Md70k8WInlfj3zHbLqkVzsOV5_Hre8VTV24aec76gnwpjTSNYJ59Vp7iKWjFGnz_an1SvStlSyjjn6mV1wttOCaXUaaVXpvyqb3OEcQJPLu9MP5spppGkQKYNkCswJdoeyPc4woApR77EDG7PmJ4szc7Y2McpQiEhZfIz2TSRH8Zt4hjH9evqRTB9gTcP61m1urpcLb_VN7dfr5cXN7VrqZpq36EFwRV4GsC6VjgpbDBOOuegk8Fb17S-aYIM1KIrZXnovBPCCdk5xs-q64OsT2ardzkOJv_RyUR9f5DyWpuMtfegO6W85Y20huF9JRZBGupZq5QMQtIFan0-aO1mO4B32Jls-ieiTzNj3Oh1utOLRrWt5Cjw4UEgp98zlEkPsTjoezNCmovGj2q7hsoFRfT9f-g2zRkbe08JQSUGUucHam3QQBxDwncdhochujRCiHh-IZlSKMz2Fj4eLricSskQjtU3VO9HRh9HBtl3j-0eyX8zwv8Cx6e72A</recordid><startdate>20220603</startdate><enddate>20220603</enddate><creator>Stradovnik, Saša</creator><creator>Hace, Aleš</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4802-168X</orcidid><orcidid>https://orcid.org/0000-0002-3488-2326</orcidid></search><sort><creationdate>20220603</creationdate><title>Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining</title><author>Stradovnik, Saša ; Hace, Aleš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Collaboration</topic><topic>Control systems</topic><topic>Decomposition</topic><topic>End effectors</topic><topic>Feasibility</topic><topic>Industrial robots</topic><topic>kinematic performance evaluation</topic><topic>Kinematics</topic><topic>Machining</topic><topic>manipulability index</topic><topic>manipulability polytope</topic><topic>Methods</topic><topic>Optimization</topic><topic>Robot arms</topic><topic>Robot dynamics</topic><topic>robot surface machining</topic><topic>Robotics</topic><topic>Robots</topic><topic>Small &amp; medium sized enterprises-SME</topic><topic>task feasibility</topic><topic>task-dependent kinematic capability</topic><topic>Technology application</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stradovnik, Saša</creatorcontrib><creatorcontrib>Hace, Aleš</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stradovnik, Saša</au><au>Hace, Aleš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-06-03</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>4267</spage><pages>4267-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35684888</pmid><doi>10.3390/s22114267</doi><orcidid>https://orcid.org/0000-0003-4802-168X</orcidid><orcidid>https://orcid.org/0000-0002-3488-2326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-06, Vol.22 (11), p.4267
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_688db317ba2c44849f7a0d25887f4709
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Algorithms
Angular velocity
Collaboration
Control systems
Decomposition
End effectors
Feasibility
Industrial robots
kinematic performance evaluation
Kinematics
Machining
manipulability index
manipulability polytope
Methods
Optimization
Robot arms
Robot dynamics
robot surface machining
Robotics
Robots
Small & medium sized enterprises-SME
task feasibility
task-dependent kinematic capability
Technology application
Velocity
title Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Oriented%20Evaluation%20of%20the%20Feasible%20Kinematic%20Directional%20Capabilities%20for%20Robot%20Machining&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Stradovnik,%20Sa%C5%A1a&rft.date=2022-06-03&rft.volume=22&rft.issue=11&rft.spage=4267&rft.pages=4267-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22114267&rft_dat=%3Cgale_doaj_%3EA728856129%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674407070&rft_id=info:pmid/35684888&rft_galeid=A728856129&rfr_iscdi=true