Loading…
Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining
Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior t...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-06, Vol.22 (11), p.4267 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23 |
container_end_page | |
container_issue | 11 |
container_start_page | 4267 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Stradovnik, Saša Hace, Aleš |
description | Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace. |
doi_str_mv | 10.3390/s22114267 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_688db317ba2c44849f7a0d25887f4709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728856129</galeid><doaj_id>oai_doaj_org_article_688db317ba2c44849f7a0d25887f4709</doaj_id><sourcerecordid>A728856129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgkOLYTuy9IFVLCxVFldDeLX-Md70k8WInlfj3zHbLqkVzsOV5_Hre8VTV24aec76gnwpjTSNYJ59Vp7iKWjFGnz_an1SvStlSyjjn6mV1wttOCaXUaaVXpvyqb3OEcQJPLu9MP5spppGkQKYNkCswJdoeyPc4woApR77EDG7PmJ4szc7Y2McpQiEhZfIz2TSRH8Zt4hjH9evqRTB9gTcP61m1urpcLb_VN7dfr5cXN7VrqZpq36EFwRV4GsC6VjgpbDBOOuegk8Fb17S-aYIM1KIrZXnovBPCCdk5xs-q64OsT2ardzkOJv_RyUR9f5DyWpuMtfegO6W85Y20huF9JRZBGupZq5QMQtIFan0-aO1mO4B32Jls-ieiTzNj3Oh1utOLRrWt5Cjw4UEgp98zlEkPsTjoezNCmovGj2q7hsoFRfT9f-g2zRkbe08JQSUGUucHam3QQBxDwncdhochujRCiHh-IZlSKMz2Fj4eLricSskQjtU3VO9HRh9HBtl3j-0eyX8zwv8Cx6e72A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674407070</pqid></control><display><type>article</type><title>Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Stradovnik, Saša ; Hace, Aleš</creator><creatorcontrib>Stradovnik, Saša ; Hace, Aleš</creatorcontrib><description>Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22114267</identifier><identifier>PMID: 35684888</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Angular velocity ; Collaboration ; Control systems ; Decomposition ; End effectors ; Feasibility ; Industrial robots ; kinematic performance evaluation ; Kinematics ; Machining ; manipulability index ; manipulability polytope ; Methods ; Optimization ; Robot arms ; Robot dynamics ; robot surface machining ; Robotics ; Robots ; Small & medium sized enterprises-SME ; task feasibility ; task-dependent kinematic capability ; Technology application ; Velocity</subject><ispartof>Sensors (Basel, Switzerland), 2022-06, Vol.22 (11), p.4267</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23</citedby><cites>FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23</cites><orcidid>0000-0003-4802-168X ; 0000-0002-3488-2326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2674407070/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2674407070?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35684888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stradovnik, Saša</creatorcontrib><creatorcontrib>Hace, Aleš</creatorcontrib><title>Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Collaboration</subject><subject>Control systems</subject><subject>Decomposition</subject><subject>End effectors</subject><subject>Feasibility</subject><subject>Industrial robots</subject><subject>kinematic performance evaluation</subject><subject>Kinematics</subject><subject>Machining</subject><subject>manipulability index</subject><subject>manipulability polytope</subject><subject>Methods</subject><subject>Optimization</subject><subject>Robot arms</subject><subject>Robot dynamics</subject><subject>robot surface machining</subject><subject>Robotics</subject><subject>Robots</subject><subject>Small & medium sized enterprises-SME</subject><subject>task feasibility</subject><subject>task-dependent kinematic capability</subject><subject>Technology application</subject><subject>Velocity</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgkOLYTuy9IFVLCxVFldDeLX-Md70k8WInlfj3zHbLqkVzsOV5_Hre8VTV24aec76gnwpjTSNYJ59Vp7iKWjFGnz_an1SvStlSyjjn6mV1wttOCaXUaaVXpvyqb3OEcQJPLu9MP5spppGkQKYNkCswJdoeyPc4woApR77EDG7PmJ4szc7Y2McpQiEhZfIz2TSRH8Zt4hjH9evqRTB9gTcP61m1urpcLb_VN7dfr5cXN7VrqZpq36EFwRV4GsC6VjgpbDBOOuegk8Fb17S-aYIM1KIrZXnovBPCCdk5xs-q64OsT2ardzkOJv_RyUR9f5DyWpuMtfegO6W85Y20huF9JRZBGupZq5QMQtIFan0-aO1mO4B32Jls-ieiTzNj3Oh1utOLRrWt5Cjw4UEgp98zlEkPsTjoezNCmovGj2q7hsoFRfT9f-g2zRkbe08JQSUGUucHam3QQBxDwncdhochujRCiHh-IZlSKMz2Fj4eLricSskQjtU3VO9HRh9HBtl3j-0eyX8zwv8Cx6e72A</recordid><startdate>20220603</startdate><enddate>20220603</enddate><creator>Stradovnik, Saša</creator><creator>Hace, Aleš</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4802-168X</orcidid><orcidid>https://orcid.org/0000-0002-3488-2326</orcidid></search><sort><creationdate>20220603</creationdate><title>Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining</title><author>Stradovnik, Saša ; Hace, Aleš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Collaboration</topic><topic>Control systems</topic><topic>Decomposition</topic><topic>End effectors</topic><topic>Feasibility</topic><topic>Industrial robots</topic><topic>kinematic performance evaluation</topic><topic>Kinematics</topic><topic>Machining</topic><topic>manipulability index</topic><topic>manipulability polytope</topic><topic>Methods</topic><topic>Optimization</topic><topic>Robot arms</topic><topic>Robot dynamics</topic><topic>robot surface machining</topic><topic>Robotics</topic><topic>Robots</topic><topic>Small & medium sized enterprises-SME</topic><topic>task feasibility</topic><topic>task-dependent kinematic capability</topic><topic>Technology application</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stradovnik, Saša</creatorcontrib><creatorcontrib>Hace, Aleš</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stradovnik, Saša</au><au>Hace, Aleš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-06-03</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>4267</spage><pages>4267-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Performing the machining of complex surfaces can be a challenging task for a robot, especially in terms of collaborative robotics, where the available motion capabilities are greatly reduced in comparison with conventional industrial robot arms. It is necessary to evaluate these capabilities prior to task execution, for which we need efficient algorithms, especially in the case of flexible robot applications. To provide accurate and physically consistent information about the maximum kinematic capabilities while considering the requirements of the task, an approach called the Decomposed Twist Feasibility (DTF) method is proposed in this study. The evaluation of the maximum feasible end-effector velocity is based on the idea of decomposition into the linear and angular motion capabilities, considering a typical robot machining task with synchronous linear and angular motion. The proposed DTF method is presented by the well-known manipulability polytope concept. Unlike the existing methods that estimate the kinematic performance capabilities in arbitrarily weighted twist space, or separately in the translation and the rotation subspace, our approach offers an accurate and simple solution for the determination of the total kinematic performance capabilities, which is often highly required, especially in the case of robot machining tasks. The numerical results obtained in this study show the effectiveness of the proposed approach. Moreover, the proposed DTF method could represent suitable kinematic performance criteria for the optimal placement of predefined tasks within the robot workspace.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35684888</pmid><doi>10.3390/s22114267</doi><orcidid>https://orcid.org/0000-0003-4802-168X</orcidid><orcidid>https://orcid.org/0000-0002-3488-2326</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-06, Vol.22 (11), p.4267 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_688db317ba2c44849f7a0d25887f4709 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Algorithms Angular velocity Collaboration Control systems Decomposition End effectors Feasibility Industrial robots kinematic performance evaluation Kinematics Machining manipulability index manipulability polytope Methods Optimization Robot arms Robot dynamics robot surface machining Robotics Robots Small & medium sized enterprises-SME task feasibility task-dependent kinematic capability Technology application Velocity |
title | Task-Oriented Evaluation of the Feasible Kinematic Directional Capabilities for Robot Machining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Oriented%20Evaluation%20of%20the%20Feasible%20Kinematic%20Directional%20Capabilities%20for%20Robot%20Machining&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Stradovnik,%20Sa%C5%A1a&rft.date=2022-06-03&rft.volume=22&rft.issue=11&rft.spage=4267&rft.pages=4267-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22114267&rft_dat=%3Cgale_doaj_%3EA728856129%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d6221438ed0febc54c74bfac7ccce67fdbc15d11f7f0b4248b3f6dc44c476c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674407070&rft_id=info:pmid/35684888&rft_galeid=A728856129&rfr_iscdi=true |