Loading…
Closed-Loop Nash Equilibrium in the Class of Piecewise Constant Strategies in a Linear State Feedback Form for Stochastic LQ Games
In this paper, we examine a sampled-data Nash equilibrium strategy for a stochastic linear quadratic (LQ) differential game, in which admissible strategies are assumed to be constant on the interval between consecutive measurements. Our solution first involves transforming the problem into a linear...
Saved in:
Published in: | Mathematics (Basel) 2021-11, Vol.9 (21), p.2713 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-6889f7a6148230338993d2adda96bf23ecf25ce41c278c798dd9f77a7b7a7b593 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-6889f7a6148230338993d2adda96bf23ecf25ce41c278c798dd9f77a7b7a7b593 |
container_end_page | |
container_issue | 21 |
container_start_page | 2713 |
container_title | Mathematics (Basel) |
container_volume | 9 |
creator | Drăgan, Vasile Ivanov, Ivan Ganchev Popa, Ioan-Lucian Bagdasar, Ovidiu |
description | In this paper, we examine a sampled-data Nash equilibrium strategy for a stochastic linear quadratic (LQ) differential game, in which admissible strategies are assumed to be constant on the interval between consecutive measurements. Our solution first involves transforming the problem into a linear stochastic system with finite jumps. This allows us to obtain necessary and sufficient conditions assuring the existence of a sampled-data Nash equilibrium strategy, extending earlier results to a general context with more than two players. Furthermore, we provide a numerical algorithm for calculating the feedback matrices of the Nash equilibrium strategies. Finally, we illustrate the effectiveness of the proposed algorithm by two numerical examples. As both situations highlight a stabilization effect, this confirms the efficiency of our approach. |
doi_str_mv | 10.3390/math9212713 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_689f5191224a4904b41f4b332aba0a1c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_689f5191224a4904b41f4b332aba0a1c</doaj_id><sourcerecordid>2596045324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6889f7a6148230338993d2adda96bf23ecf25ce41c278c798dd9f77a7b7a7b593</originalsourceid><addsrcrecordid>eNpNkVtLw0AQhYMoWLRP_oEFHyWaveSyjxLaWgheUJ-XyWbTbk2y7e4G8dVf7taKdGCY4eNwzsBE0RVObinlyV0Pfs0JJjmmJ9GEEJLHeeCnR_t5NHVuk4TimBaMT6LvsjNONXFlzBY9gluj2W7Una6tHnukB-TXCpUdOIdMi561kupTu4DM4DwMHr16C16ttHJ7NaBKDwpswIGiuVJNDfIDzY3tUWv23Mg1OK8lql7QAnrlLqOzFjqnpn_zInqfz97Kh7h6WizL-yqWNGM-zoqCtzlkmBWEJpQWnNOGQNMAz-qWUCVbkkrFsCR5IXNeNE3Q55DX-045vYiWB9_GwEZsre7BfgkDWvwCY1cCbDisUyILUSnmmBAGjCesZrhlNaUEakgAy-B1ffDaWrMblfNiY0Y7hPMFSXmWsJQSFlQ3B5W0xjmr2v9UnIj9z8TRz-gPdzCItA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596045324</pqid></control><display><type>article</type><title>Closed-Loop Nash Equilibrium in the Class of Piecewise Constant Strategies in a Linear State Feedback Form for Stochastic LQ Games</title><source>Publicly Available Content Database</source><creator>Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian ; Bagdasar, Ovidiu</creator><creatorcontrib>Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian ; Bagdasar, Ovidiu</creatorcontrib><description>In this paper, we examine a sampled-data Nash equilibrium strategy for a stochastic linear quadratic (LQ) differential game, in which admissible strategies are assumed to be constant on the interval between consecutive measurements. Our solution first involves transforming the problem into a linear stochastic system with finite jumps. This allows us to obtain necessary and sufficient conditions assuring the existence of a sampled-data Nash equilibrium strategy, extending earlier results to a general context with more than two players. Furthermore, we provide a numerical algorithm for calculating the feedback matrices of the Nash equilibrium strategies. Finally, we illustrate the effectiveness of the proposed algorithm by two numerical examples. As both situations highlight a stabilization effect, this confirms the efficiency of our approach.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9212713</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Differential games ; Dynamical systems ; Equilibrium ; equilibrium strategies ; Game theory ; Games ; Mathematics ; nash equilibria ; Noise ; Numerical analysis ; optimal trajectories ; Random variables ; sampled-data controls ; State feedback ; stochastic LQ differential games ; Stochastic systems ; Strategy</subject><ispartof>Mathematics (Basel), 2021-11, Vol.9 (21), p.2713</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-6889f7a6148230338993d2adda96bf23ecf25ce41c278c798dd9f77a7b7a7b593</citedby><cites>FETCH-LOGICAL-c364t-6889f7a6148230338993d2adda96bf23ecf25ce41c278c798dd9f77a7b7a7b593</cites><orcidid>0000-0002-9019-072X ; 0000-0003-4193-9842 ; 0000-0001-8042-1806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596045324/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596045324?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Drăgan, Vasile</creatorcontrib><creatorcontrib>Ivanov, Ivan Ganchev</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><creatorcontrib>Bagdasar, Ovidiu</creatorcontrib><title>Closed-Loop Nash Equilibrium in the Class of Piecewise Constant Strategies in a Linear State Feedback Form for Stochastic LQ Games</title><title>Mathematics (Basel)</title><description>In this paper, we examine a sampled-data Nash equilibrium strategy for a stochastic linear quadratic (LQ) differential game, in which admissible strategies are assumed to be constant on the interval between consecutive measurements. Our solution first involves transforming the problem into a linear stochastic system with finite jumps. This allows us to obtain necessary and sufficient conditions assuring the existence of a sampled-data Nash equilibrium strategy, extending earlier results to a general context with more than two players. Furthermore, we provide a numerical algorithm for calculating the feedback matrices of the Nash equilibrium strategies. Finally, we illustrate the effectiveness of the proposed algorithm by two numerical examples. As both situations highlight a stabilization effect, this confirms the efficiency of our approach.</description><subject>Algorithms</subject><subject>Differential games</subject><subject>Dynamical systems</subject><subject>Equilibrium</subject><subject>equilibrium strategies</subject><subject>Game theory</subject><subject>Games</subject><subject>Mathematics</subject><subject>nash equilibria</subject><subject>Noise</subject><subject>Numerical analysis</subject><subject>optimal trajectories</subject><subject>Random variables</subject><subject>sampled-data controls</subject><subject>State feedback</subject><subject>stochastic LQ differential games</subject><subject>Stochastic systems</subject><subject>Strategy</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLw0AQhYMoWLRP_oEFHyWaveSyjxLaWgheUJ-XyWbTbk2y7e4G8dVf7taKdGCY4eNwzsBE0RVObinlyV0Pfs0JJjmmJ9GEEJLHeeCnR_t5NHVuk4TimBaMT6LvsjNONXFlzBY9gluj2W7Una6tHnukB-TXCpUdOIdMi561kupTu4DM4DwMHr16C16ttHJ7NaBKDwpswIGiuVJNDfIDzY3tUWv23Mg1OK8lql7QAnrlLqOzFjqnpn_zInqfz97Kh7h6WizL-yqWNGM-zoqCtzlkmBWEJpQWnNOGQNMAz-qWUCVbkkrFsCR5IXNeNE3Q55DX-045vYiWB9_GwEZsre7BfgkDWvwCY1cCbDisUyILUSnmmBAGjCesZrhlNaUEakgAy-B1ffDaWrMblfNiY0Y7hPMFSXmWsJQSFlQ3B5W0xjmr2v9UnIj9z8TRz-gPdzCItA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Drăgan, Vasile</creator><creator>Ivanov, Ivan Ganchev</creator><creator>Popa, Ioan-Lucian</creator><creator>Bagdasar, Ovidiu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9019-072X</orcidid><orcidid>https://orcid.org/0000-0003-4193-9842</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid></search><sort><creationdate>20211101</creationdate><title>Closed-Loop Nash Equilibrium in the Class of Piecewise Constant Strategies in a Linear State Feedback Form for Stochastic LQ Games</title><author>Drăgan, Vasile ; Ivanov, Ivan Ganchev ; Popa, Ioan-Lucian ; Bagdasar, Ovidiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6889f7a6148230338993d2adda96bf23ecf25ce41c278c798dd9f77a7b7a7b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Differential games</topic><topic>Dynamical systems</topic><topic>Equilibrium</topic><topic>equilibrium strategies</topic><topic>Game theory</topic><topic>Games</topic><topic>Mathematics</topic><topic>nash equilibria</topic><topic>Noise</topic><topic>Numerical analysis</topic><topic>optimal trajectories</topic><topic>Random variables</topic><topic>sampled-data controls</topic><topic>State feedback</topic><topic>stochastic LQ differential games</topic><topic>Stochastic systems</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drăgan, Vasile</creatorcontrib><creatorcontrib>Ivanov, Ivan Ganchev</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><creatorcontrib>Bagdasar, Ovidiu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drăgan, Vasile</au><au>Ivanov, Ivan Ganchev</au><au>Popa, Ioan-Lucian</au><au>Bagdasar, Ovidiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Loop Nash Equilibrium in the Class of Piecewise Constant Strategies in a Linear State Feedback Form for Stochastic LQ Games</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>9</volume><issue>21</issue><spage>2713</spage><pages>2713-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In this paper, we examine a sampled-data Nash equilibrium strategy for a stochastic linear quadratic (LQ) differential game, in which admissible strategies are assumed to be constant on the interval between consecutive measurements. Our solution first involves transforming the problem into a linear stochastic system with finite jumps. This allows us to obtain necessary and sufficient conditions assuring the existence of a sampled-data Nash equilibrium strategy, extending earlier results to a general context with more than two players. Furthermore, we provide a numerical algorithm for calculating the feedback matrices of the Nash equilibrium strategies. Finally, we illustrate the effectiveness of the proposed algorithm by two numerical examples. As both situations highlight a stabilization effect, this confirms the efficiency of our approach.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9212713</doi><orcidid>https://orcid.org/0000-0002-9019-072X</orcidid><orcidid>https://orcid.org/0000-0003-4193-9842</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2021-11, Vol.9 (21), p.2713 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_689f5191224a4904b41f4b332aba0a1c |
source | Publicly Available Content Database |
subjects | Algorithms Differential games Dynamical systems Equilibrium equilibrium strategies Game theory Games Mathematics nash equilibria Noise Numerical analysis optimal trajectories Random variables sampled-data controls State feedback stochastic LQ differential games Stochastic systems Strategy |
title | Closed-Loop Nash Equilibrium in the Class of Piecewise Constant Strategies in a Linear State Feedback Form for Stochastic LQ Games |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Loop%20Nash%20Equilibrium%20in%20the%20Class%20of%20Piecewise%20Constant%20Strategies%20in%20a%20Linear%20State%20Feedback%20Form%20for%20Stochastic%20LQ%20Games&rft.jtitle=Mathematics%20(Basel)&rft.au=Dr%C4%83gan,%20Vasile&rft.date=2021-11-01&rft.volume=9&rft.issue=21&rft.spage=2713&rft.pages=2713-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9212713&rft_dat=%3Cproquest_doaj_%3E2596045324%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-6889f7a6148230338993d2adda96bf23ecf25ce41c278c798dd9f77a7b7a7b593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596045324&rft_id=info:pmid/&rfr_iscdi=true |