Loading…

Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography

Ruminant milk is an essential part of the human diet and is widely accepted as a major nutrient source in developing countries. However, the polar and neutral lipid content variation in milk fat globules (MFG)among cow, goat, and water buffalo is poorly understood. This study used high-performance t...

Full description

Saved in:
Bibliographic Details
Published in:Dairy (Basel) 2023-02, Vol.4 (1), p.200-214
Main Authors: Kapoor, Ayushi, Verma, Aparna, Ambatipudi, Kiran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-a1fc91b36ab6a964db96fc56103cb69fe3097036afeff60a131c48b434eb30fd3
cites cdi_FETCH-LOGICAL-c397t-a1fc91b36ab6a964db96fc56103cb69fe3097036afeff60a131c48b434eb30fd3
container_end_page 214
container_issue 1
container_start_page 200
container_title Dairy (Basel)
container_volume 4
creator Kapoor, Ayushi
Verma, Aparna
Ambatipudi, Kiran
description Ruminant milk is an essential part of the human diet and is widely accepted as a major nutrient source in developing countries. However, the polar and neutral lipid content variation in milk fat globules (MFG)among cow, goat, and water buffalo is poorly understood. This study used high-performance thin layer chromatography to identify and quantify five major polar (PL) and three neutral lipids (NL) from the MFG of cow, goat, and water buffalo. Optimal separation was achieved for PLs using chloroform: methanol: water (65:25:4), and hexane: diethyl ether: acetic acid (70:30:1) for NLs. The lower detectable (0.12 to 1.53 μg/mL) and quantification (0.12 to 1.53 μg/mL) limits indicated the high sensitivity of the method. Quantification at 540 nm showed the highest abundance of phosphatidylethanolamine and triglycerides. Fat globules were further characterized for size and microstructural properties, which revealed smaller globules in goats (0.99 ± 0.04 μm) than cows (1.85 ± 0.03 μm) and water buffaloes (2.91 ± 0.08 μm), indicating a negative correlation with PL but a positive correlation with NL. The variation in lipid quantity among different animal species suggests more research to support their selection as a suitable source for developing functional food to impact human health positively.
doi_str_mv 10.3390/dairy4010014
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68b4a11cf8ca42dc8a96bb8172debbe9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68b4a11cf8ca42dc8a96bb8172debbe9</doaj_id><sourcerecordid>2791599927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a1fc91b36ab6a964db96fc56103cb69fe3097036afeff60a131c48b434eb30fd3</originalsourceid><addsrcrecordid>eNpNUUtPwzAMrhBIoMGNHxCJ6wpJE9LmCBV7SENwAMEtctJkzeiakXag8usJDKGdbPl7WXaSnBN8SanAVxW4MDBMMCbsIDnJeMbSgmevh3v9cXLWdSuMcZYLhgU_ST7KGgLo3gT3Bb3zLfIWlf5zjKYe-jGCtkIvEGF0u7UWGo_uXfOGJtCjaePVtjFo4Tau6pAa0Mwt6_TRBOvDGlpt0FPtWrSAIcrLOvg19H4ZYFMPp8lRNOvM2V8dJc-Tu6dyli4epvPyZpFqKvI-BWK1IIpyUBwEZ5US3OprTjDVigtrKBY5jrA11nIMhBLNCsUoM4piW9FRMt_5Vh5WchPcGsIgPTj5O_BhKSH0TjdG8qgDQrQtNLCs0kUMVKogeVYZpYyIXhc7r03w71vT9XLlt6GN68t4TnIthMjyyBrvWDr4rgvG_qcSLH8eJfcfRb8B_dCHbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791599927</pqid></control><display><type>article</type><title>Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography</title><source>Publicly Available Content Database</source><creator>Kapoor, Ayushi ; Verma, Aparna ; Ambatipudi, Kiran</creator><creatorcontrib>Kapoor, Ayushi ; Verma, Aparna ; Ambatipudi, Kiran</creatorcontrib><description>Ruminant milk is an essential part of the human diet and is widely accepted as a major nutrient source in developing countries. However, the polar and neutral lipid content variation in milk fat globules (MFG)among cow, goat, and water buffalo is poorly understood. This study used high-performance thin layer chromatography to identify and quantify five major polar (PL) and three neutral lipids (NL) from the MFG of cow, goat, and water buffalo. Optimal separation was achieved for PLs using chloroform: methanol: water (65:25:4), and hexane: diethyl ether: acetic acid (70:30:1) for NLs. The lower detectable (0.12 to 1.53 μg/mL) and quantification (0.12 to 1.53 μg/mL) limits indicated the high sensitivity of the method. Quantification at 540 nm showed the highest abundance of phosphatidylethanolamine and triglycerides. Fat globules were further characterized for size and microstructural properties, which revealed smaller globules in goats (0.99 ± 0.04 μm) than cows (1.85 ± 0.03 μm) and water buffaloes (2.91 ± 0.08 μm), indicating a negative correlation with PL but a positive correlation with NL. The variation in lipid quantity among different animal species suggests more research to support their selection as a suitable source for developing functional food to impact human health positively.</description><identifier>ISSN: 2624-862X</identifier><identifier>EISSN: 2624-862X</identifier><identifier>DOI: 10.3390/dairy4010014</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acetic acid ; Animal fat ; Animal species ; Animals ; Bubalus bubalis ; Buffalo ; Cattle ; Chloroform ; Cholesterol ; Chromatography ; Developing countries ; Diethyl ether ; Functional foods &amp; nutraceuticals ; Globules ; Goats ; Hexanes ; high-performance thin-layer chromatography ; Iodine ; LDCs ; lipid quantitation ; Lipids ; microstructure ; Milk ; milk fat globule membrane ; Milk fat globule membranes ; neutral lipid ; Nutrient content ; Oils &amp; fats ; Particle size ; Phosphatidylethanolamine ; polar lipid ; Software ; Thin layer chromatography ; Triglycerides</subject><ispartof>Dairy (Basel), 2023-02, Vol.4 (1), p.200-214</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a1fc91b36ab6a964db96fc56103cb69fe3097036afeff60a131c48b434eb30fd3</citedby><cites>FETCH-LOGICAL-c397t-a1fc91b36ab6a964db96fc56103cb69fe3097036afeff60a131c48b434eb30fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791599927/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791599927?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Kapoor, Ayushi</creatorcontrib><creatorcontrib>Verma, Aparna</creatorcontrib><creatorcontrib>Ambatipudi, Kiran</creatorcontrib><title>Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography</title><title>Dairy (Basel)</title><description>Ruminant milk is an essential part of the human diet and is widely accepted as a major nutrient source in developing countries. However, the polar and neutral lipid content variation in milk fat globules (MFG)among cow, goat, and water buffalo is poorly understood. This study used high-performance thin layer chromatography to identify and quantify five major polar (PL) and three neutral lipids (NL) from the MFG of cow, goat, and water buffalo. Optimal separation was achieved for PLs using chloroform: methanol: water (65:25:4), and hexane: diethyl ether: acetic acid (70:30:1) for NLs. The lower detectable (0.12 to 1.53 μg/mL) and quantification (0.12 to 1.53 μg/mL) limits indicated the high sensitivity of the method. Quantification at 540 nm showed the highest abundance of phosphatidylethanolamine and triglycerides. Fat globules were further characterized for size and microstructural properties, which revealed smaller globules in goats (0.99 ± 0.04 μm) than cows (1.85 ± 0.03 μm) and water buffaloes (2.91 ± 0.08 μm), indicating a negative correlation with PL but a positive correlation with NL. The variation in lipid quantity among different animal species suggests more research to support their selection as a suitable source for developing functional food to impact human health positively.</description><subject>Acetic acid</subject><subject>Animal fat</subject><subject>Animal species</subject><subject>Animals</subject><subject>Bubalus bubalis</subject><subject>Buffalo</subject><subject>Cattle</subject><subject>Chloroform</subject><subject>Cholesterol</subject><subject>Chromatography</subject><subject>Developing countries</subject><subject>Diethyl ether</subject><subject>Functional foods &amp; nutraceuticals</subject><subject>Globules</subject><subject>Goats</subject><subject>Hexanes</subject><subject>high-performance thin-layer chromatography</subject><subject>Iodine</subject><subject>LDCs</subject><subject>lipid quantitation</subject><subject>Lipids</subject><subject>microstructure</subject><subject>Milk</subject><subject>milk fat globule membrane</subject><subject>Milk fat globule membranes</subject><subject>neutral lipid</subject><subject>Nutrient content</subject><subject>Oils &amp; fats</subject><subject>Particle size</subject><subject>Phosphatidylethanolamine</subject><subject>polar lipid</subject><subject>Software</subject><subject>Thin layer chromatography</subject><subject>Triglycerides</subject><issn>2624-862X</issn><issn>2624-862X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtPwzAMrhBIoMGNHxCJ6wpJE9LmCBV7SENwAMEtctJkzeiakXag8usJDKGdbPl7WXaSnBN8SanAVxW4MDBMMCbsIDnJeMbSgmevh3v9cXLWdSuMcZYLhgU_ST7KGgLo3gT3Bb3zLfIWlf5zjKYe-jGCtkIvEGF0u7UWGo_uXfOGJtCjaePVtjFo4Tau6pAa0Mwt6_TRBOvDGlpt0FPtWrSAIcrLOvg19H4ZYFMPp8lRNOvM2V8dJc-Tu6dyli4epvPyZpFqKvI-BWK1IIpyUBwEZ5US3OprTjDVigtrKBY5jrA11nIMhBLNCsUoM4piW9FRMt_5Vh5WchPcGsIgPTj5O_BhKSH0TjdG8qgDQrQtNLCs0kUMVKogeVYZpYyIXhc7r03w71vT9XLlt6GN68t4TnIthMjyyBrvWDr4rgvG_qcSLH8eJfcfRb8B_dCHbg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Kapoor, Ayushi</creator><creator>Verma, Aparna</creator><creator>Ambatipudi, Kiran</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20230201</creationdate><title>Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography</title><author>Kapoor, Ayushi ; Verma, Aparna ; Ambatipudi, Kiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a1fc91b36ab6a964db96fc56103cb69fe3097036afeff60a131c48b434eb30fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetic acid</topic><topic>Animal fat</topic><topic>Animal species</topic><topic>Animals</topic><topic>Bubalus bubalis</topic><topic>Buffalo</topic><topic>Cattle</topic><topic>Chloroform</topic><topic>Cholesterol</topic><topic>Chromatography</topic><topic>Developing countries</topic><topic>Diethyl ether</topic><topic>Functional foods &amp; nutraceuticals</topic><topic>Globules</topic><topic>Goats</topic><topic>Hexanes</topic><topic>high-performance thin-layer chromatography</topic><topic>Iodine</topic><topic>LDCs</topic><topic>lipid quantitation</topic><topic>Lipids</topic><topic>microstructure</topic><topic>Milk</topic><topic>milk fat globule membrane</topic><topic>Milk fat globule membranes</topic><topic>neutral lipid</topic><topic>Nutrient content</topic><topic>Oils &amp; fats</topic><topic>Particle size</topic><topic>Phosphatidylethanolamine</topic><topic>polar lipid</topic><topic>Software</topic><topic>Thin layer chromatography</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapoor, Ayushi</creatorcontrib><creatorcontrib>Verma, Aparna</creatorcontrib><creatorcontrib>Ambatipudi, Kiran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Dairy (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapoor, Ayushi</au><au>Verma, Aparna</au><au>Ambatipudi, Kiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography</atitle><jtitle>Dairy (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>4</volume><issue>1</issue><spage>200</spage><epage>214</epage><pages>200-214</pages><issn>2624-862X</issn><eissn>2624-862X</eissn><abstract>Ruminant milk is an essential part of the human diet and is widely accepted as a major nutrient source in developing countries. However, the polar and neutral lipid content variation in milk fat globules (MFG)among cow, goat, and water buffalo is poorly understood. This study used high-performance thin layer chromatography to identify and quantify five major polar (PL) and three neutral lipids (NL) from the MFG of cow, goat, and water buffalo. Optimal separation was achieved for PLs using chloroform: methanol: water (65:25:4), and hexane: diethyl ether: acetic acid (70:30:1) for NLs. The lower detectable (0.12 to 1.53 μg/mL) and quantification (0.12 to 1.53 μg/mL) limits indicated the high sensitivity of the method. Quantification at 540 nm showed the highest abundance of phosphatidylethanolamine and triglycerides. Fat globules were further characterized for size and microstructural properties, which revealed smaller globules in goats (0.99 ± 0.04 μm) than cows (1.85 ± 0.03 μm) and water buffaloes (2.91 ± 0.08 μm), indicating a negative correlation with PL but a positive correlation with NL. The variation in lipid quantity among different animal species suggests more research to support their selection as a suitable source for developing functional food to impact human health positively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/dairy4010014</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2624-862X
ispartof Dairy (Basel), 2023-02, Vol.4 (1), p.200-214
issn 2624-862X
2624-862X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_68b4a11cf8ca42dc8a96bb8172debbe9
source Publicly Available Content Database
subjects Acetic acid
Animal fat
Animal species
Animals
Bubalus bubalis
Buffalo
Cattle
Chloroform
Cholesterol
Chromatography
Developing countries
Diethyl ether
Functional foods & nutraceuticals
Globules
Goats
Hexanes
high-performance thin-layer chromatography
Iodine
LDCs
lipid quantitation
Lipids
microstructure
Milk
milk fat globule membrane
Milk fat globule membranes
neutral lipid
Nutrient content
Oils & fats
Particle size
Phosphatidylethanolamine
polar lipid
Software
Thin layer chromatography
Triglycerides
title Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Cow,%20Goat,%20and%20Water%20Buffalo%20Milk%20Fat%20Globule%20Lipids%20by%20High-Performance%20Thin%20Layer%20Chromatography&rft.jtitle=Dairy%20(Basel)&rft.au=Kapoor,%20Ayushi&rft.date=2023-02-01&rft.volume=4&rft.issue=1&rft.spage=200&rft.epage=214&rft.pages=200-214&rft.issn=2624-862X&rft.eissn=2624-862X&rft_id=info:doi/10.3390/dairy4010014&rft_dat=%3Cproquest_doaj_%3E2791599927%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-a1fc91b36ab6a964db96fc56103cb69fe3097036afeff60a131c48b434eb30fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791599927&rft_id=info:pmid/&rfr_iscdi=true