Loading…

Generalized information matrix tests for detecting model misspecification

Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, a...

Full description

Saved in:
Bibliographic Details
Published in:Econometrics 2016-12, Vol.4 (4), p.1-24
Main Authors: Golden, Richard M, Henley, Steven S, White, Halbert, Kashner, T. Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3
cites cdi_FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3
container_end_page 24
container_issue 4
container_start_page 1
container_title Econometrics
container_volume 4
creator Golden, Richard M
Henley, Steven S
White, Halbert
Kashner, T. Michael
description Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.
doi_str_mv 10.3390/econometrics4040046
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68b5401042664e80a0c91615b0e34baf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68b5401042664e80a0c91615b0e34baf</doaj_id><sourcerecordid>4301350071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgqf0FIix4Xs33Zo9StBYKXvQcstlJSdnd1CQF9de77Yp4cC4zvHnvzQyD0DXBd4zV-B5sGEIPOXqbOOYYc3mGZpRSURLC5fmf-hItUtrhMWrCFK1maL2CAaLp_Be0hR9ciL3JPgzFmKL_KDKknIoRLlrIYLMftkUfWuiK3qe0B-udtyfFFbpwpkuw-Mlz9Pb0-Lp8Ljcvq_XyYVNaXqtcSiWrpmoZwZLKqgKraGM5CItNA4JSAAqKNEZVHBsDUjjrrBDOUNfIugU2R-vJtw1mp_fR9yZ-6mC8PgEhbrWJ2dsOtFSN4JhgTqXkoLDBtiaSiAYD441xo9ft5LWP4f0wnqp34RCHcX1NlFCMYsXJyGITy8aQUgT3O5VgfXyB_ucFo-pmUh2bPp04KYeoSUVULdg38aqHuw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858320841</pqid></control><display><type>article</type><title>Generalized information matrix tests for detecting model misspecification</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Publicly Available Content (ProQuest)</source><creator>Golden, Richard M ; Henley, Steven S ; White, Halbert ; Kashner, T. Michael</creator><creatorcontrib>Golden, Richard M ; Henley, Steven S ; White, Halbert ; Kashner, T. Michael</creatorcontrib><description>Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.</description><identifier>ISSN: 2225-1146</identifier><identifier>EISSN: 2225-1146</identifier><identifier>DOI: 10.3390/econometrics4040046</identifier><language>eng</language><publisher>Basel: MDPI</publisher><subject>asymptotic theory ; Econometrics ; Economic models ; Economic statistics ; Economic theory ; Equality ; Hypotheses ; Information Matrix Test ; information ratio ; logistic regression ; Medical research ; misspecification ; Observational studies ; Probability ; Random variables ; Regression analysis ; Residuals ; Simulation ; simulation study ; specification analysis ; Statistics ; Studies</subject><ispartof>Econometrics, 2016-12, Vol.4 (4), p.1-24</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3</citedby><cites>FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1858320841/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1858320841?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11687,25752,27923,27924,36059,37011,44362,44589,74766,74997</link.rule.ids></links><search><creatorcontrib>Golden, Richard M</creatorcontrib><creatorcontrib>Henley, Steven S</creatorcontrib><creatorcontrib>White, Halbert</creatorcontrib><creatorcontrib>Kashner, T. Michael</creatorcontrib><title>Generalized information matrix tests for detecting model misspecification</title><title>Econometrics</title><description>Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.</description><subject>asymptotic theory</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Equality</subject><subject>Hypotheses</subject><subject>Information Matrix Test</subject><subject>information ratio</subject><subject>logistic regression</subject><subject>Medical research</subject><subject>misspecification</subject><subject>Observational studies</subject><subject>Probability</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Residuals</subject><subject>Simulation</subject><subject>simulation study</subject><subject>specification analysis</subject><subject>Statistics</subject><subject>Studies</subject><issn>2225-1146</issn><issn>2225-1146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LAzEQDaJgqf0FIix4Xs33Zo9StBYKXvQcstlJSdnd1CQF9de77Yp4cC4zvHnvzQyD0DXBd4zV-B5sGEIPOXqbOOYYc3mGZpRSURLC5fmf-hItUtrhMWrCFK1maL2CAaLp_Be0hR9ciL3JPgzFmKL_KDKknIoRLlrIYLMftkUfWuiK3qe0B-udtyfFFbpwpkuw-Mlz9Pb0-Lp8Ljcvq_XyYVNaXqtcSiWrpmoZwZLKqgKraGM5CItNA4JSAAqKNEZVHBsDUjjrrBDOUNfIugU2R-vJtw1mp_fR9yZ-6mC8PgEhbrWJ2dsOtFSN4JhgTqXkoLDBtiaSiAYD441xo9ft5LWP4f0wnqp34RCHcX1NlFCMYsXJyGITy8aQUgT3O5VgfXyB_ucFo-pmUh2bPp04KYeoSUVULdg38aqHuw</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Golden, Richard M</creator><creator>Henley, Steven S</creator><creator>White, Halbert</creator><creator>Kashner, T. Michael</creator><general>MDPI</general><general>MDPI AG</general><scope>OT2</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20161201</creationdate><title>Generalized information matrix tests for detecting model misspecification</title><author>Golden, Richard M ; Henley, Steven S ; White, Halbert ; Kashner, T. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>asymptotic theory</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Equality</topic><topic>Hypotheses</topic><topic>Information Matrix Test</topic><topic>information ratio</topic><topic>logistic regression</topic><topic>Medical research</topic><topic>misspecification</topic><topic>Observational studies</topic><topic>Probability</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Residuals</topic><topic>Simulation</topic><topic>simulation study</topic><topic>specification analysis</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golden, Richard M</creatorcontrib><creatorcontrib>Henley, Steven S</creatorcontrib><creatorcontrib>White, Halbert</creatorcontrib><creatorcontrib>Kashner, T. Michael</creatorcontrib><collection>EconStor</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golden, Richard M</au><au>Henley, Steven S</au><au>White, Halbert</au><au>Kashner, T. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized information matrix tests for detecting model misspecification</atitle><jtitle>Econometrics</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>4</volume><issue>4</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>2225-1146</issn><eissn>2225-1146</eissn><abstract>Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.</abstract><cop>Basel</cop><pub>MDPI</pub><doi>10.3390/econometrics4040046</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2225-1146
ispartof Econometrics, 2016-12, Vol.4 (4), p.1-24
issn 2225-1146
2225-1146
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_68b5401042664e80a0c91615b0e34baf
source Business Source Ultimate; ABI/INFORM Global; Publicly Available Content (ProQuest)
subjects asymptotic theory
Econometrics
Economic models
Economic statistics
Economic theory
Equality
Hypotheses
Information Matrix Test
information ratio
logistic regression
Medical research
misspecification
Observational studies
Probability
Random variables
Regression analysis
Residuals
Simulation
simulation study
specification analysis
Statistics
Studies
title Generalized information matrix tests for detecting model misspecification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20information%20matrix%20tests%20for%20detecting%20model%20misspecification&rft.jtitle=Econometrics&rft.au=Golden,%20Richard%20M&rft.date=2016-12-01&rft.volume=4&rft.issue=4&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=2225-1146&rft.eissn=2225-1146&rft_id=info:doi/10.3390/econometrics4040046&rft_dat=%3Cproquest_doaj_%3E4301350071%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1858320841&rft_id=info:pmid/&rfr_iscdi=true