Loading…
Generalized information matrix tests for detecting model misspecification
Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, a...
Saved in:
Published in: | Econometrics 2016-12, Vol.4 (4), p.1-24 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3 |
container_end_page | 24 |
container_issue | 4 |
container_start_page | 1 |
container_title | Econometrics |
container_volume | 4 |
creator | Golden, Richard M Henley, Steven S White, Halbert Kashner, T. Michael |
description | Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance. |
doi_str_mv | 10.3390/econometrics4040046 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68b5401042664e80a0c91615b0e34baf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68b5401042664e80a0c91615b0e34baf</doaj_id><sourcerecordid>4301350071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3</originalsourceid><addsrcrecordid>eNptUU1LAzEQDaJgqf0FIix4Xs33Zo9StBYKXvQcstlJSdnd1CQF9de77Yp4cC4zvHnvzQyD0DXBd4zV-B5sGEIPOXqbOOYYc3mGZpRSURLC5fmf-hItUtrhMWrCFK1maL2CAaLp_Be0hR9ciL3JPgzFmKL_KDKknIoRLlrIYLMftkUfWuiK3qe0B-udtyfFFbpwpkuw-Mlz9Pb0-Lp8Ljcvq_XyYVNaXqtcSiWrpmoZwZLKqgKraGM5CItNA4JSAAqKNEZVHBsDUjjrrBDOUNfIugU2R-vJtw1mp_fR9yZ-6mC8PgEhbrWJ2dsOtFSN4JhgTqXkoLDBtiaSiAYD441xo9ft5LWP4f0wnqp34RCHcX1NlFCMYsXJyGITy8aQUgT3O5VgfXyB_ucFo-pmUh2bPp04KYeoSUVULdg38aqHuw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858320841</pqid></control><display><type>article</type><title>Generalized information matrix tests for detecting model misspecification</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Publicly Available Content (ProQuest)</source><creator>Golden, Richard M ; Henley, Steven S ; White, Halbert ; Kashner, T. Michael</creator><creatorcontrib>Golden, Richard M ; Henley, Steven S ; White, Halbert ; Kashner, T. Michael</creatorcontrib><description>Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.</description><identifier>ISSN: 2225-1146</identifier><identifier>EISSN: 2225-1146</identifier><identifier>DOI: 10.3390/econometrics4040046</identifier><language>eng</language><publisher>Basel: MDPI</publisher><subject>asymptotic theory ; Econometrics ; Economic models ; Economic statistics ; Economic theory ; Equality ; Hypotheses ; Information Matrix Test ; information ratio ; logistic regression ; Medical research ; misspecification ; Observational studies ; Probability ; Random variables ; Regression analysis ; Residuals ; Simulation ; simulation study ; specification analysis ; Statistics ; Studies</subject><ispartof>Econometrics, 2016-12, Vol.4 (4), p.1-24</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3</citedby><cites>FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1858320841/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1858320841?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11687,25752,27923,27924,36059,37011,44362,44589,74766,74997</link.rule.ids></links><search><creatorcontrib>Golden, Richard M</creatorcontrib><creatorcontrib>Henley, Steven S</creatorcontrib><creatorcontrib>White, Halbert</creatorcontrib><creatorcontrib>Kashner, T. Michael</creatorcontrib><title>Generalized information matrix tests for detecting model misspecification</title><title>Econometrics</title><description>Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.</description><subject>asymptotic theory</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Equality</subject><subject>Hypotheses</subject><subject>Information Matrix Test</subject><subject>information ratio</subject><subject>logistic regression</subject><subject>Medical research</subject><subject>misspecification</subject><subject>Observational studies</subject><subject>Probability</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Residuals</subject><subject>Simulation</subject><subject>simulation study</subject><subject>specification analysis</subject><subject>Statistics</subject><subject>Studies</subject><issn>2225-1146</issn><issn>2225-1146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LAzEQDaJgqf0FIix4Xs33Zo9StBYKXvQcstlJSdnd1CQF9de77Yp4cC4zvHnvzQyD0DXBd4zV-B5sGEIPOXqbOOYYc3mGZpRSURLC5fmf-hItUtrhMWrCFK1maL2CAaLp_Be0hR9ciL3JPgzFmKL_KDKknIoRLlrIYLMftkUfWuiK3qe0B-udtyfFFbpwpkuw-Mlz9Pb0-Lp8Ljcvq_XyYVNaXqtcSiWrpmoZwZLKqgKraGM5CItNA4JSAAqKNEZVHBsDUjjrrBDOUNfIugU2R-vJtw1mp_fR9yZ-6mC8PgEhbrWJ2dsOtFSN4JhgTqXkoLDBtiaSiAYD441xo9ft5LWP4f0wnqp34RCHcX1NlFCMYsXJyGITy8aQUgT3O5VgfXyB_ucFo-pmUh2bPp04KYeoSUVULdg38aqHuw</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Golden, Richard M</creator><creator>Henley, Steven S</creator><creator>White, Halbert</creator><creator>Kashner, T. Michael</creator><general>MDPI</general><general>MDPI AG</general><scope>OT2</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20161201</creationdate><title>Generalized information matrix tests for detecting model misspecification</title><author>Golden, Richard M ; Henley, Steven S ; White, Halbert ; Kashner, T. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>asymptotic theory</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Equality</topic><topic>Hypotheses</topic><topic>Information Matrix Test</topic><topic>information ratio</topic><topic>logistic regression</topic><topic>Medical research</topic><topic>misspecification</topic><topic>Observational studies</topic><topic>Probability</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Residuals</topic><topic>Simulation</topic><topic>simulation study</topic><topic>specification analysis</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golden, Richard M</creatorcontrib><creatorcontrib>Henley, Steven S</creatorcontrib><creatorcontrib>White, Halbert</creatorcontrib><creatorcontrib>Kashner, T. Michael</creatorcontrib><collection>EconStor</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golden, Richard M</au><au>Henley, Steven S</au><au>White, Halbert</au><au>Kashner, T. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized information matrix tests for detecting model misspecification</atitle><jtitle>Econometrics</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>4</volume><issue>4</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>2225-1146</issn><eissn>2225-1146</eissn><abstract>Generalized Information Matrix Tests (GIMTs) have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.</abstract><cop>Basel</cop><pub>MDPI</pub><doi>10.3390/econometrics4040046</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2225-1146 |
ispartof | Econometrics, 2016-12, Vol.4 (4), p.1-24 |
issn | 2225-1146 2225-1146 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_68b5401042664e80a0c91615b0e34baf |
source | Business Source Ultimate; ABI/INFORM Global; Publicly Available Content (ProQuest) |
subjects | asymptotic theory Econometrics Economic models Economic statistics Economic theory Equality Hypotheses Information Matrix Test information ratio logistic regression Medical research misspecification Observational studies Probability Random variables Regression analysis Residuals Simulation simulation study specification analysis Statistics Studies |
title | Generalized information matrix tests for detecting model misspecification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20information%20matrix%20tests%20for%20detecting%20model%20misspecification&rft.jtitle=Econometrics&rft.au=Golden,%20Richard%20M&rft.date=2016-12-01&rft.volume=4&rft.issue=4&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=2225-1146&rft.eissn=2225-1146&rft_id=info:doi/10.3390/econometrics4040046&rft_dat=%3Cproquest_doaj_%3E4301350071%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-6867b7d31062677ec82bc4e5c0abe522ee2e81ba8740aae65fcfc55fa2fb69de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1858320841&rft_id=info:pmid/&rfr_iscdi=true |