Loading…
Optimal Operational Scheduling of Reconfigurable Multi-Microgrids Considering Energy Storage Systems
This paper proposes an optimal operational scheduling of a reconfigurable multi-microgrid (MG) distribution system complemented by demand response programs and Energy Storage Systems (ESSs) in an uncertain environment. Since there is a set of competing players with inherently conflicting objectives...
Saved in:
Published in: | Energies (Basel) 2019-05, Vol.12 (9), p.1766 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes an optimal operational scheduling of a reconfigurable multi-microgrid (MG) distribution system complemented by demand response programs and Energy Storage Systems (ESSs) in an uncertain environment. Since there is a set of competing players with inherently conflicting objectives in the system under study such as the Distribution System Operator (DSO) and MG owners, a one-leader multi-follower-type bi-level optimization model is proposed. In this framework, the upper-level player as a leader minimizes the total cost from DSO’s point of view, while the lower-level players as multi-followers maximize the profit of MG owners. Since the resulting model is a non-linear bi-level optimization problem, it is transformed into a single-level mixed-integer second-order cone programming problem through Karush–Kuhn–Tucker conditions. The satisfactory performance of the proposed model is investigated on a real-test system under different scenarios and working conditions. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en12091766 |