Loading…
Smart Materials for Environmental Remediation Based on Two-Component Gels: Room-Temperature-Phase-Selective Gelation for the Removal of Organic Pollutants Including Nitrobenzene/O-Dichlorobenzene, and Dye Molecules from the Wastewater
Novel two-component gel systems based on aliphatic acid–hydroxy/base interaction were developed as smart materials for environmental remediation. The G1-A16 gelator could be used directly as a powder form to selectively gel aromatic solvents (nitrobenzene and o-dichlorobenzene) from their mixtures w...
Saved in:
Published in: | Nanoscale research letters 2019-02, Vol.14 (1), p.42-10, Article 42 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel two-component gel systems based on aliphatic acid–hydroxy/base interaction were developed as smart materials for environmental remediation. The
G1-A16
gelator could be used directly as a powder form to selectively gel aromatic solvents (nitrobenzene and o-dichlorobenzene) from their mixtures with wastewater (containing 0.5 M sodium nitrate and 0.5 M sodium sulfate) via a simple shaking strategy at room temperature without employing co-solvents and a heating–cooling process. Meanwhile, the two-component gel system can efficiently remove the toxic dyes from the aqueous solution. The dominant factors that drive gelation in the case of the gelator and nitrobenzene or water have been studied using FT-IR,
1
H NMR, and XRD. Overall, our research provides an efficient two-component approach for facilely tuning the properties of one-component gel for the realization of high-performance functionalities of gels. At the same time, our study demonstrates potential industrial application prospect in removing pollutants efficiently (such as aromatic solvents and toxic dye removal). |
---|---|
ISSN: | 1931-7573 1556-276X |
DOI: | 10.1186/s11671-019-2865-6 |