Loading…

Expansion and Refinement of Deep Sequence-Coupled Biopanning Technology for Epitope-Specific Antibody Responses in Human Serum

Identifying the specific epitopes targeted by antibodies elicited in response to infectious diseases is important for developing vaccines and diagnostics. However, techniques for broadly exploring the specificity of antibodies in a rapid manner are lacking, limiting our ability to quickly respond to...

Full description

Saved in:
Bibliographic Details
Published in:Viruses 2020-09, Vol.12 (10), p.1114
Main Authors: Warner, Nikole L, Linville, Alexandria C, Core, Susan B, Moreno, Brechla, Pascale, Juan M, Peabody, David S, Chackerian, Bryce, Frietze, Kathryn M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identifying the specific epitopes targeted by antibodies elicited in response to infectious diseases is important for developing vaccines and diagnostics. However, techniques for broadly exploring the specificity of antibodies in a rapid manner are lacking, limiting our ability to quickly respond to emerging viruses. We previously reported a technology that couples deep sequencing technology with a bacteriophage MS2 virus-like particle (VLP) peptide display platform for identifying pathogen-specific antibody responses. Here, we describe refinements that expand the number of patient samples that can be processed at one time, increasing the utility of this technology for rapidly responding to emerging infectious diseases. We used dengue virus (DENV) as a model system since much is already known about the antibody response. Sera from primary DENV-infected patients (n = 28) were used to pan an MS2 bacteriophage VLP library displaying all possible 10-amino-acid peptides from the DENV polypeptide. Selected VLPs were identified by deep sequencing and further investigated by enzyme-linked immunosorbent assay. We identified previously described immunodominant regions of envelope and nonstructural protein-1, as well as a number of other epitopes. Our refinement of the deep sequence-coupled biopanning technology expands the utility of this approach for rapidly investigating the specificity of antibody responses to infectious diseases.
ISSN:1999-4915
1999-4915
DOI:10.3390/v12101114