Loading…

A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks

Intrusion detection plays an important role in ensuring information security, and the key technology is to accurately identify various attacks in the network. In this paper, we explore how to model an intrusion detection system based on deep learning, and we propose a deep learning approach for intr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2017-01, Vol.5, p.21954-21961
Main Authors: Yin, Chuanlong, Zhu, Yuefei, Fei, Jinlong, He, Xinzheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intrusion detection plays an important role in ensuring information security, and the key technology is to accurately identify various attacks in the network. In this paper, we explore how to model an intrusion detection system based on deep learning, and we propose a deep learning approach for intrusion detection using recurrent neural networks (RNN-IDS). Moreover, we study the performance of the model in binary classification and multiclass classification, and the number of neurons and different learning rate impacts on the performance of the proposed model. We compare it with those of J48, artificial neural network, random forest, support vector machine, and other machine learning methods proposed by previous researchers on the benchmark data set. The experimental results show that RNN-IDS is very suitable for modeling a classification model with high accuracy and that its performance is superior to that of traditional machine learning classification methods in both binary and multiclass classification. The RNN-IDS model improves the accuracy of the intrusion detection and provides a new research method for intrusion detection.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2017.2762418