Loading…
Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry
Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy...
Saved in:
Published in: | Physical review. X 2024-01, Vol.14 (1), p.011009, Article 011009 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423 |
container_end_page | |
container_issue | 1 |
container_start_page | 011009 |
container_title | Physical review. X |
container_volume | 14 |
creator | Gray, Johnnie Chan, Garnet Kin-Lic |
description | Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction strategies in the literature as well as recently proposed general contraction algorithms on a variety of synthetic and physical problems on regular lattices and random regular graphs. We further showcase the power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-dimensional lattice partition functions, dimer counting on random regular graphs, and to access the hardness transition of random tensor network models, in graphs with many thousands of tensors. |
doi_str_mv | 10.1103/PhysRevX.14.011009 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68d645ff95a4490983952339ce8e83c5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68d645ff95a4490983952339ce8e83c5</doaj_id><sourcerecordid>oai_doaj_org_article_68d645ff95a4490983952339ce8e83c5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGpfwKu8wNacdpNclqJtoXiigndhNzuxqW2zZIN1fXpXq-LczPDz8zF8CF1SMqaU8Kv7ddc-wtvzmIox6ROiT9CA0YJknBN1-u8-R6O23ZB-CkKFlAP0MO8aiKFJfuc_oMaTponh3e_KBHga9imWNvmwx8HhFezbEPEtpEOIry0--LTGk1j5vhQ7PIOwgxS7C3Tmym0Lo589RE8316vpPFvezRbTyTKzPJcpqyorXUWJIoWoKYCqQBLCma0IaFvrijlVOSktzaVWBQPLKWhgGmrhasH4EC2O3DqUG9PE_ufYmVB68x2E-GLKmLzdgilUXYjcOZ2XQmiiFdc541xbUKC4zXsWO7JsDG0bwf3xKDFfjs2vY0OFOTrmn4L_coc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry</title><source>Publicly Available Content (ProQuest)</source><creator>Gray, Johnnie ; Chan, Garnet Kin-Lic</creator><creatorcontrib>Gray, Johnnie ; Chan, Garnet Kin-Lic</creatorcontrib><description>Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction strategies in the literature as well as recently proposed general contraction algorithms on a variety of synthetic and physical problems on regular lattices and random regular graphs. We further showcase the power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-dimensional lattice partition functions, dimer counting on random regular graphs, and to access the hardness transition of random tensor network models, in graphs with many thousands of tensors.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.14.011009</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>Physical review. X, 2024-01, Vol.14 (1), p.011009, Article 011009</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423</citedby><cites>FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423</cites><orcidid>0000-0001-9461-3024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gray, Johnnie</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><title>Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry</title><title>Physical review. X</title><description>Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction strategies in the literature as well as recently proposed general contraction algorithms on a variety of synthetic and physical problems on regular lattices and random regular graphs. We further showcase the power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-dimensional lattice partition functions, dimer counting on random regular graphs, and to access the hardness transition of random tensor network models, in graphs with many thousands of tensors.</description><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNtKAzEQhoMoWGpfwKu8wNacdpNclqJtoXiigndhNzuxqW2zZIN1fXpXq-LczPDz8zF8CF1SMqaU8Kv7ddc-wtvzmIox6ROiT9CA0YJknBN1-u8-R6O23ZB-CkKFlAP0MO8aiKFJfuc_oMaTponh3e_KBHga9imWNvmwx8HhFezbEPEtpEOIry0--LTGk1j5vhQ7PIOwgxS7C3Tmym0Lo589RE8316vpPFvezRbTyTKzPJcpqyorXUWJIoWoKYCqQBLCma0IaFvrijlVOSktzaVWBQPLKWhgGmrhasH4EC2O3DqUG9PE_ufYmVB68x2E-GLKmLzdgilUXYjcOZ2XQmiiFdc541xbUKC4zXsWO7JsDG0bwf3xKDFfjs2vY0OFOTrmn4L_coc</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Gray, Johnnie</creator><creator>Chan, Garnet Kin-Lic</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9461-3024</orcidid></search><sort><creationdate>20240101</creationdate><title>Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry</title><author>Gray, Johnnie ; Chan, Garnet Kin-Lic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Johnnie</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><collection>CrossRef</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Johnnie</au><au>Chan, Garnet Kin-Lic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry</atitle><jtitle>Physical review. X</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>011009</spage><pages>011009-</pages><artnum>011009</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction strategies in the literature as well as recently proposed general contraction algorithms on a variety of synthetic and physical problems on regular lattices and random regular graphs. We further showcase the power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-dimensional lattice partition functions, dimer counting on random regular graphs, and to access the hardness transition of random tensor network models, in graphs with many thousands of tensors.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevX.14.011009</doi><orcidid>https://orcid.org/0000-0001-9461-3024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2024-01, Vol.14 (1), p.011009, Article 011009 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_68d645ff95a4490983952339ce8e83c5 |
source | Publicly Available Content (ProQuest) |
title | Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperoptimized%20Approximate%20Contraction%20of%20Tensor%20Networks%20with%20Arbitrary%20Geometry&rft.jtitle=Physical%20review.%20X&rft.au=Gray,%20Johnnie&rft.date=2024-01-01&rft.volume=14&rft.issue=1&rft.spage=011009&rft.pages=011009-&rft.artnum=011009&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.14.011009&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_68d645ff95a4490983952339ce8e83c5%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |