Loading…

Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry

Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2024-01, Vol.14 (1), p.011009, Article 011009
Main Authors: Gray, Johnnie, Chan, Garnet Kin-Lic
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423
cites cdi_FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423
container_end_page
container_issue 1
container_start_page 011009
container_title Physical review. X
container_volume 14
creator Gray, Johnnie
Chan, Garnet Kin-Lic
description Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction strategies in the literature as well as recently proposed general contraction algorithms on a variety of synthetic and physical problems on regular lattices and random regular graphs. We further showcase the power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-dimensional lattice partition functions, dimer counting on random regular graphs, and to access the hardness transition of random tensor network models, in graphs with many thousands of tensors.
doi_str_mv 10.1103/PhysRevX.14.011009
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68d645ff95a4490983952339ce8e83c5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68d645ff95a4490983952339ce8e83c5</doaj_id><sourcerecordid>oai_doaj_org_article_68d645ff95a4490983952339ce8e83c5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423</originalsourceid><addsrcrecordid>eNpNkNtKAzEQhoMoWGpfwKu8wNacdpNclqJtoXiigndhNzuxqW2zZIN1fXpXq-LczPDz8zF8CF1SMqaU8Kv7ddc-wtvzmIox6ROiT9CA0YJknBN1-u8-R6O23ZB-CkKFlAP0MO8aiKFJfuc_oMaTponh3e_KBHga9imWNvmwx8HhFezbEPEtpEOIry0--LTGk1j5vhQ7PIOwgxS7C3Tmym0Lo589RE8316vpPFvezRbTyTKzPJcpqyorXUWJIoWoKYCqQBLCma0IaFvrijlVOSktzaVWBQPLKWhgGmrhasH4EC2O3DqUG9PE_ufYmVB68x2E-GLKmLzdgilUXYjcOZ2XQmiiFdc541xbUKC4zXsWO7JsDG0bwf3xKDFfjs2vY0OFOTrmn4L_coc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry</title><source>Publicly Available Content (ProQuest)</source><creator>Gray, Johnnie ; Chan, Garnet Kin-Lic</creator><creatorcontrib>Gray, Johnnie ; Chan, Garnet Kin-Lic</creatorcontrib><description>Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction strategies in the literature as well as recently proposed general contraction algorithms on a variety of synthetic and physical problems on regular lattices and random regular graphs. We further showcase the power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-dimensional lattice partition functions, dimer counting on random regular graphs, and to access the hardness transition of random tensor network models, in graphs with many thousands of tensors.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.14.011009</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>Physical review. X, 2024-01, Vol.14 (1), p.011009, Article 011009</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423</citedby><cites>FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423</cites><orcidid>0000-0001-9461-3024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gray, Johnnie</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><title>Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry</title><title>Physical review. X</title><description>Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction strategies in the literature as well as recently proposed general contraction algorithms on a variety of synthetic and physical problems on regular lattices and random regular graphs. We further showcase the power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-dimensional lattice partition functions, dimer counting on random regular graphs, and to access the hardness transition of random tensor network models, in graphs with many thousands of tensors.</description><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNtKAzEQhoMoWGpfwKu8wNacdpNclqJtoXiigndhNzuxqW2zZIN1fXpXq-LczPDz8zF8CF1SMqaU8Kv7ddc-wtvzmIox6ROiT9CA0YJknBN1-u8-R6O23ZB-CkKFlAP0MO8aiKFJfuc_oMaTponh3e_KBHga9imWNvmwx8HhFezbEPEtpEOIry0--LTGk1j5vhQ7PIOwgxS7C3Tmym0Lo589RE8316vpPFvezRbTyTKzPJcpqyorXUWJIoWoKYCqQBLCma0IaFvrijlVOSktzaVWBQPLKWhgGmrhasH4EC2O3DqUG9PE_ufYmVB68x2E-GLKmLzdgilUXYjcOZ2XQmiiFdc541xbUKC4zXsWO7JsDG0bwf3xKDFfjs2vY0OFOTrmn4L_coc</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Gray, Johnnie</creator><creator>Chan, Garnet Kin-Lic</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9461-3024</orcidid></search><sort><creationdate>20240101</creationdate><title>Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry</title><author>Gray, Johnnie ; Chan, Garnet Kin-Lic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Johnnie</creatorcontrib><creatorcontrib>Chan, Garnet Kin-Lic</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Johnnie</au><au>Chan, Garnet Kin-Lic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry</atitle><jtitle>Physical review. X</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>011009</spage><pages>011009-</pages><artnum>011009</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Tensor network contraction is central to problems ranging from many-body physics to computer science. We describe how to approximate tensor network contraction through bond compression on arbitrary graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction strategies in the literature as well as recently proposed general contraction algorithms on a variety of synthetic and physical problems on regular lattices and random regular graphs. We further showcase the power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-dimensional lattice partition functions, dimer counting on random regular graphs, and to access the hardness transition of random tensor network models, in graphs with many thousands of tensors.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevX.14.011009</doi><orcidid>https://orcid.org/0000-0001-9461-3024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2024-01, Vol.14 (1), p.011009, Article 011009
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_68d645ff95a4490983952339ce8e83c5
source Publicly Available Content (ProQuest)
title Hyperoptimized Approximate Contraction of Tensor Networks with Arbitrary Geometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperoptimized%20Approximate%20Contraction%20of%20Tensor%20Networks%20with%20Arbitrary%20Geometry&rft.jtitle=Physical%20review.%20X&rft.au=Gray,%20Johnnie&rft.date=2024-01-01&rft.volume=14&rft.issue=1&rft.spage=011009&rft.pages=011009-&rft.artnum=011009&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.14.011009&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_68d645ff95a4490983952339ce8e83c5%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-bbc7fb108064d1ee8be70032cb0e9cd9b2f8bf77c1579862ec31e9e29ed4fd423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true