Loading…
Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential
We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈...
Saved in:
Published in: | Journal of applied mathematics 2022-06, Vol.2022, p.1-6 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083 |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | Journal of applied mathematics |
container_volume | 2022 |
creator | Idrisi, M. Javed Eshetie, Teklehaimanot Tilahun, Tenaw Kerebh, Mitiku |
description | We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈−1,1 is the coupling constant of Yukawa force to gravitational force, and λ∈0,∞ is the range of Yukawa force. It is observed that as λ⟶∞, the mean-motion of the primaries n⟶1+α1/2 and as λ⟶0, n⟶1. Further, it is observed that the mean-motion is unity, i.e., n=1 for α=0, n>1 if α>0 and n |
doi_str_mv | 10.1155/2022/4072418 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68d6afde6a2c4e1e82d1d0c643da88d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A709009413</galeid><doaj_id>oai_doaj_org_article_68d6afde6a2c4e1e82d1d0c643da88d0</doaj_id><sourcerecordid>A709009413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083</originalsourceid><addsrcrecordid>eNp9kV1LHTEQhpfSQq31rj8g0Mt2dfKx2eylPdhWEBVRaK_CnHwcc7omms1y8N83x5VelrnI5OGddwbepvlE4ZjSrjthwNiJgJ4Jqt40B1SqvgUQ7G3tKYW27_pf75sP07QFYNAN9KDB2xwwbuYRMzl7msMY1hWQEMkN_3ZN5mhdJuXekVWKU6gfLCFFkjz5Pf_BHVaeszMvsCRy6XYlxepIrlNxsQQcPzbvPI6TO3p9D5u772e3q5_txdWP89XpRWt4z0rbDeBtByh6FGjE2vVMUsaNFNSJXirfATVGMCa5Es5x6ru15YMYOAdjQfHD5nzxtQm3-jGHB8zPOmHQLyDljcZcghmdlspK9NZJZEY46hSz1EJdxS0qZaF6fV68HnN6mt1U9DbNOdbzNZOKK6BS7DceL6oNVtMQfSoZTS3rHoJJ0flQ-WkPA8AgKK8DX5cBk9M0Zef_nUlB7xPU-wT1a4JV_mWR34docRf-r_4LAQyZUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683801648</pqid></control><display><type>article</type><title>Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Idrisi, M. Javed ; Eshetie, Teklehaimanot ; Tilahun, Tenaw ; Kerebh, Mitiku</creator><contributor>Ashrafi, A. R. ; A R Ashrafi</contributor><creatorcontrib>Idrisi, M. Javed ; Eshetie, Teklehaimanot ; Tilahun, Tenaw ; Kerebh, Mitiku ; Ashrafi, A. R. ; A R Ashrafi</creatorcontrib><description><![CDATA[We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈−1,1 is the coupling constant of Yukawa force to gravitational force, and λ∈0,∞ is the range of Yukawa force. It is observed that as λ⟶∞, the mean-motion of the primaries n⟶1+α1/2 and as λ⟶0, n⟶1. Further, it is observed that the mean-motion is unity, i.e., n=1 for α=0, n>1 if α>0 and n<1 when α<0. The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μc=μ0+fα,λ, where μ0=0.0385209⋯ is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μc=μ0 either for α=0 or λ=0.618034, and the critical mass parameter μc possesses maximum (μcmax) and minimum (μcmin) values in the intervals −1<α<0 and 0<α<1, respectively, for λ=1/3.]]></description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2022/4072418</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Critical mass ; Equilibrium ; Gravity ; Motion stability ; Parameters ; Satellites ; Stability analysis ; Theory of relativity ; Three body problem</subject><ispartof>Journal of applied mathematics, 2022-06, Vol.2022, p.1-6</ispartof><rights>Copyright © 2022 M. Javed Idrisi et al.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 M. Javed Idrisi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083</citedby><cites>FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083</cites><orcidid>0000-0003-1435-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2683801648/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2683801648?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Ashrafi, A. R.</contributor><contributor>A R Ashrafi</contributor><creatorcontrib>Idrisi, M. Javed</creatorcontrib><creatorcontrib>Eshetie, Teklehaimanot</creatorcontrib><creatorcontrib>Tilahun, Tenaw</creatorcontrib><creatorcontrib>Kerebh, Mitiku</creatorcontrib><title>Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential</title><title>Journal of applied mathematics</title><description><![CDATA[We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈−1,1 is the coupling constant of Yukawa force to gravitational force, and λ∈0,∞ is the range of Yukawa force. It is observed that as λ⟶∞, the mean-motion of the primaries n⟶1+α1/2 and as λ⟶0, n⟶1. Further, it is observed that the mean-motion is unity, i.e., n=1 for α=0, n>1 if α>0 and n<1 when α<0. The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μc=μ0+fα,λ, where μ0=0.0385209⋯ is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μc=μ0 either for α=0 or λ=0.618034, and the critical mass parameter μc possesses maximum (μcmax) and minimum (μcmin) values in the intervals −1<α<0 and 0<α<1, respectively, for λ=1/3.]]></description><subject>Critical mass</subject><subject>Equilibrium</subject><subject>Gravity</subject><subject>Motion stability</subject><subject>Parameters</subject><subject>Satellites</subject><subject>Stability analysis</subject><subject>Theory of relativity</subject><subject>Three body problem</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1LHTEQhpfSQq31rj8g0Mt2dfKx2eylPdhWEBVRaK_CnHwcc7omms1y8N83x5VelrnI5OGddwbepvlE4ZjSrjthwNiJgJ4Jqt40B1SqvgUQ7G3tKYW27_pf75sP07QFYNAN9KDB2xwwbuYRMzl7msMY1hWQEMkN_3ZN5mhdJuXekVWKU6gfLCFFkjz5Pf_BHVaeszMvsCRy6XYlxepIrlNxsQQcPzbvPI6TO3p9D5u772e3q5_txdWP89XpRWt4z0rbDeBtByh6FGjE2vVMUsaNFNSJXirfATVGMCa5Es5x6ru15YMYOAdjQfHD5nzxtQm3-jGHB8zPOmHQLyDljcZcghmdlspK9NZJZEY46hSz1EJdxS0qZaF6fV68HnN6mt1U9DbNOdbzNZOKK6BS7DceL6oNVtMQfSoZTS3rHoJJ0flQ-WkPA8AgKK8DX5cBk9M0Zef_nUlB7xPU-wT1a4JV_mWR34docRf-r_4LAQyZUA</recordid><startdate>20220625</startdate><enddate>20220625</enddate><creator>Idrisi, M. Javed</creator><creator>Eshetie, Teklehaimanot</creator><creator>Tilahun, Tenaw</creator><creator>Kerebh, Mitiku</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1435-6780</orcidid></search><sort><creationdate>20220625</creationdate><title>Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential</title><author>Idrisi, M. Javed ; Eshetie, Teklehaimanot ; Tilahun, Tenaw ; Kerebh, Mitiku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Critical mass</topic><topic>Equilibrium</topic><topic>Gravity</topic><topic>Motion stability</topic><topic>Parameters</topic><topic>Satellites</topic><topic>Stability analysis</topic><topic>Theory of relativity</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idrisi, M. Javed</creatorcontrib><creatorcontrib>Eshetie, Teklehaimanot</creatorcontrib><creatorcontrib>Tilahun, Tenaw</creatorcontrib><creatorcontrib>Kerebh, Mitiku</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idrisi, M. Javed</au><au>Eshetie, Teklehaimanot</au><au>Tilahun, Tenaw</au><au>Kerebh, Mitiku</au><au>Ashrafi, A. R.</au><au>A R Ashrafi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential</atitle><jtitle>Journal of applied mathematics</jtitle><date>2022-06-25</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract><![CDATA[We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈−1,1 is the coupling constant of Yukawa force to gravitational force, and λ∈0,∞ is the range of Yukawa force. It is observed that as λ⟶∞, the mean-motion of the primaries n⟶1+α1/2 and as λ⟶0, n⟶1. Further, it is observed that the mean-motion is unity, i.e., n=1 for α=0, n>1 if α>0 and n<1 when α<0. The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μc=μ0+fα,λ, where μ0=0.0385209⋯ is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μc=μ0 either for α=0 or λ=0.618034, and the critical mass parameter μc possesses maximum (μcmax) and minimum (μcmin) values in the intervals −1<α<0 and 0<α<1, respectively, for λ=1/3.]]></abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4072418</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1435-6780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-757X |
ispartof | Journal of applied mathematics, 2022-06, Vol.2022, p.1-6 |
issn | 1110-757X 1687-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_68d6afde6a2c4e1e82d1d0c643da88d0 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Critical mass Equilibrium Gravity Motion stability Parameters Satellites Stability analysis Theory of relativity Three body problem |
title | Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triangular%20Equilibria%20in%20R3BP%20under%20the%20Consideration%20of%20Yukawa%20Correction%20to%20Newtonian%20Potential&rft.jtitle=Journal%20of%20applied%20mathematics&rft.au=Idrisi,%20M.%20Javed&rft.date=2022-06-25&rft.volume=2022&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2022/4072418&rft_dat=%3Cgale_doaj_%3EA709009413%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2683801648&rft_id=info:pmid/&rft_galeid=A709009413&rfr_iscdi=true |