Loading…

Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential

We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied mathematics 2022-06, Vol.2022, p.1-6
Main Authors: Idrisi, M. Javed, Eshetie, Teklehaimanot, Tilahun, Tenaw, Kerebh, Mitiku
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083
cites cdi_FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083
container_end_page 6
container_issue
container_start_page 1
container_title Journal of applied mathematics
container_volume 2022
creator Idrisi, M. Javed
Eshetie, Teklehaimanot
Tilahun, Tenaw
Kerebh, Mitiku
description We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈−1,1 is the coupling constant of Yukawa force to gravitational force, and λ∈0,∞ is the range of Yukawa force. It is observed that as λ⟶∞, the mean-motion of the primaries n⟶1+α1/2 and as λ⟶0, n⟶1. Further, it is observed that the mean-motion is unity, i.e., n=1 for α=0, n>1 if α>0 and n
doi_str_mv 10.1155/2022/4072418
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68d6afde6a2c4e1e82d1d0c643da88d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A709009413</galeid><doaj_id>oai_doaj_org_article_68d6afde6a2c4e1e82d1d0c643da88d0</doaj_id><sourcerecordid>A709009413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083</originalsourceid><addsrcrecordid>eNp9kV1LHTEQhpfSQq31rj8g0Mt2dfKx2eylPdhWEBVRaK_CnHwcc7omms1y8N83x5VelrnI5OGddwbepvlE4ZjSrjthwNiJgJ4Jqt40B1SqvgUQ7G3tKYW27_pf75sP07QFYNAN9KDB2xwwbuYRMzl7msMY1hWQEMkN_3ZN5mhdJuXekVWKU6gfLCFFkjz5Pf_BHVaeszMvsCRy6XYlxepIrlNxsQQcPzbvPI6TO3p9D5u772e3q5_txdWP89XpRWt4z0rbDeBtByh6FGjE2vVMUsaNFNSJXirfATVGMCa5Es5x6ru15YMYOAdjQfHD5nzxtQm3-jGHB8zPOmHQLyDljcZcghmdlspK9NZJZEY46hSz1EJdxS0qZaF6fV68HnN6mt1U9DbNOdbzNZOKK6BS7DceL6oNVtMQfSoZTS3rHoJJ0flQ-WkPA8AgKK8DX5cBk9M0Zef_nUlB7xPU-wT1a4JV_mWR34docRf-r_4LAQyZUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683801648</pqid></control><display><type>article</type><title>Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Idrisi, M. Javed ; Eshetie, Teklehaimanot ; Tilahun, Tenaw ; Kerebh, Mitiku</creator><contributor>Ashrafi, A. R. ; A R Ashrafi</contributor><creatorcontrib>Idrisi, M. Javed ; Eshetie, Teklehaimanot ; Tilahun, Tenaw ; Kerebh, Mitiku ; Ashrafi, A. R. ; A R Ashrafi</creatorcontrib><description><![CDATA[We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈−1,1 is the coupling constant of Yukawa force to gravitational force, and λ∈0,∞ is the range of Yukawa force. It is observed that as λ⟶∞, the mean-motion of the primaries n⟶1+α1/2 and as λ⟶0, n⟶1. Further, it is observed that the mean-motion is unity, i.e., n=1 for α=0, n>1 if α>0 and n<1 when α<0. The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μc=μ0+fα,λ, where μ0=0.0385209⋯ is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μc=μ0 either for α=0 or λ=0.618034, and the critical mass parameter μc possesses maximum (μcmax) and minimum (μcmin) values in the intervals −1<α<0 and 0<α<1, respectively, for λ=1/3.]]></description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2022/4072418</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Critical mass ; Equilibrium ; Gravity ; Motion stability ; Parameters ; Satellites ; Stability analysis ; Theory of relativity ; Three body problem</subject><ispartof>Journal of applied mathematics, 2022-06, Vol.2022, p.1-6</ispartof><rights>Copyright © 2022 M. Javed Idrisi et al.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 M. Javed Idrisi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083</citedby><cites>FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083</cites><orcidid>0000-0003-1435-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2683801648/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2683801648?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Ashrafi, A. R.</contributor><contributor>A R Ashrafi</contributor><creatorcontrib>Idrisi, M. Javed</creatorcontrib><creatorcontrib>Eshetie, Teklehaimanot</creatorcontrib><creatorcontrib>Tilahun, Tenaw</creatorcontrib><creatorcontrib>Kerebh, Mitiku</creatorcontrib><title>Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential</title><title>Journal of applied mathematics</title><description><![CDATA[We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈−1,1 is the coupling constant of Yukawa force to gravitational force, and λ∈0,∞ is the range of Yukawa force. It is observed that as λ⟶∞, the mean-motion of the primaries n⟶1+α1/2 and as λ⟶0, n⟶1. Further, it is observed that the mean-motion is unity, i.e., n=1 for α=0, n>1 if α>0 and n<1 when α<0. The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μc=μ0+fα,λ, where μ0=0.0385209⋯ is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μc=μ0 either for α=0 or λ=0.618034, and the critical mass parameter μc possesses maximum (μcmax) and minimum (μcmin) values in the intervals −1<α<0 and 0<α<1, respectively, for λ=1/3.]]></description><subject>Critical mass</subject><subject>Equilibrium</subject><subject>Gravity</subject><subject>Motion stability</subject><subject>Parameters</subject><subject>Satellites</subject><subject>Stability analysis</subject><subject>Theory of relativity</subject><subject>Three body problem</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1LHTEQhpfSQq31rj8g0Mt2dfKx2eylPdhWEBVRaK_CnHwcc7omms1y8N83x5VelrnI5OGddwbepvlE4ZjSrjthwNiJgJ4Jqt40B1SqvgUQ7G3tKYW27_pf75sP07QFYNAN9KDB2xwwbuYRMzl7msMY1hWQEMkN_3ZN5mhdJuXekVWKU6gfLCFFkjz5Pf_BHVaeszMvsCRy6XYlxepIrlNxsQQcPzbvPI6TO3p9D5u772e3q5_txdWP89XpRWt4z0rbDeBtByh6FGjE2vVMUsaNFNSJXirfATVGMCa5Es5x6ru15YMYOAdjQfHD5nzxtQm3-jGHB8zPOmHQLyDljcZcghmdlspK9NZJZEY46hSz1EJdxS0qZaF6fV68HnN6mt1U9DbNOdbzNZOKK6BS7DceL6oNVtMQfSoZTS3rHoJJ0flQ-WkPA8AgKK8DX5cBk9M0Zef_nUlB7xPU-wT1a4JV_mWR34docRf-r_4LAQyZUA</recordid><startdate>20220625</startdate><enddate>20220625</enddate><creator>Idrisi, M. Javed</creator><creator>Eshetie, Teklehaimanot</creator><creator>Tilahun, Tenaw</creator><creator>Kerebh, Mitiku</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1435-6780</orcidid></search><sort><creationdate>20220625</creationdate><title>Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential</title><author>Idrisi, M. Javed ; Eshetie, Teklehaimanot ; Tilahun, Tenaw ; Kerebh, Mitiku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Critical mass</topic><topic>Equilibrium</topic><topic>Gravity</topic><topic>Motion stability</topic><topic>Parameters</topic><topic>Satellites</topic><topic>Stability analysis</topic><topic>Theory of relativity</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idrisi, M. Javed</creatorcontrib><creatorcontrib>Eshetie, Teklehaimanot</creatorcontrib><creatorcontrib>Tilahun, Tenaw</creatorcontrib><creatorcontrib>Kerebh, Mitiku</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idrisi, M. Javed</au><au>Eshetie, Teklehaimanot</au><au>Tilahun, Tenaw</au><au>Kerebh, Mitiku</au><au>Ashrafi, A. R.</au><au>A R Ashrafi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential</atitle><jtitle>Journal of applied mathematics</jtitle><date>2022-06-25</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract><![CDATA[We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α∈−1,1 is the coupling constant of Yukawa force to gravitational force, and λ∈0,∞ is the range of Yukawa force. It is observed that as λ⟶∞, the mean-motion of the primaries n⟶1+α1/2 and as λ⟶0, n⟶1. Further, it is observed that the mean-motion is unity, i.e., n=1 for α=0, n>1 if α>0 and n<1 when α<0. The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μc=μ0+fα,λ, where μ0=0.0385209⋯ is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μc=μ0 either for α=0 or λ=0.618034, and the critical mass parameter μc possesses maximum (μcmax) and minimum (μcmin) values in the intervals −1<α<0 and 0<α<1, respectively, for λ=1/3.]]></abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4072418</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1435-6780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of applied mathematics, 2022-06, Vol.2022, p.1-6
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_68d6afde6a2c4e1e82d1d0c643da88d0
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Critical mass
Equilibrium
Gravity
Motion stability
Parameters
Satellites
Stability analysis
Theory of relativity
Three body problem
title Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triangular%20Equilibria%20in%20R3BP%20under%20the%20Consideration%20of%20Yukawa%20Correction%20to%20Newtonian%20Potential&rft.jtitle=Journal%20of%20applied%20mathematics&rft.au=Idrisi,%20M.%20Javed&rft.date=2022-06-25&rft.volume=2022&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2022/4072418&rft_dat=%3Cgale_doaj_%3EA709009413%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-590fd50a47a4ac4be726123c641e4768f501cc4226384ee31f5bd3949330cd083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2683801648&rft_id=info:pmid/&rft_galeid=A709009413&rfr_iscdi=true