Loading…

Mapping the Spatial-Temporal Dynamics of Vegetation Response Lag to Drought in a Semi-Arid Region

Drought, as an extreme climate event, affects the ecological environment for vegetation and agricultural production. Studies of the vegetative response to drought are paramount to providing scientific information for drought risk mitigation. In this paper, the spatial-temporal pattern of drought and...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2019-08, Vol.11 (16), p.1873
Main Authors: Hua, Li, Wang, Huidong, Sui, Haigang, Wardlow, Brian, Hayes, Michael J., Wang, Jianxun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-dc051bd1c48bd7074d5167667b050446e7fc53544d4e60559e566511704b66713
cites cdi_FETCH-LOGICAL-c361t-dc051bd1c48bd7074d5167667b050446e7fc53544d4e60559e566511704b66713
container_end_page
container_issue 16
container_start_page 1873
container_title Remote sensing (Basel, Switzerland)
container_volume 11
creator Hua, Li
Wang, Huidong
Sui, Haigang
Wardlow, Brian
Hayes, Michael J.
Wang, Jianxun
description Drought, as an extreme climate event, affects the ecological environment for vegetation and agricultural production. Studies of the vegetative response to drought are paramount to providing scientific information for drought risk mitigation. In this paper, the spatial-temporal pattern of drought and the response lag of vegetation in Nebraska were analyzed from 2000 to 2015. Based on the long-term Daymet data set, the standard precipitation index (SPI) was computed to identify precipitation anomalies, and the Gaussian function was applied to obtain temperature anomalies. Vegetation anomaly was identified by dynamic time warping technique using a remote sensing Normalized Difference Vegetation Index (NDVI) time series. Finally, multilayer correlation analysis was applied to obtain the response lag of different vegetation types. The results show that Nebraska suffered severe drought events in 2002 and 2012. The response lag of vegetation to drought typically ranged from 30 to 45 days varying for different vegetation types and human activities (water use and management). Grasslands had the shortest response lag (~35 days), while forests had the longest lag period (~48 days). For specific crop types, the response lag of winter wheat varied among different regions of Nebraska (35–45 days), while soybeans, corn and alfalfa had similar response lag times of approximately 40 days.
doi_str_mv 10.3390/rs11161873
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68e6a4b07fc243859fe05be112ac5c3d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68e6a4b07fc243859fe05be112ac5c3d</doaj_id><sourcerecordid>2301945199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-dc051bd1c48bd7074d5167667b050446e7fc53544d4e60559e566511704b66713</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEhPswi-IxA2pEDcfbY_TxsekISQ2uEZp6naZtqYk3WH_nsAQ4Ist-_FrS2-SXAG9Zaykdz4AgIQiZyfJKKN5lvKszE7_1efJOIQNjcEYlJSPEv2s-952LRnWSJa9Hqzepivc9c7rLZkdOr2zJhDXkHdscYhz15FXDL3rApKFjouOzLzbt-uB2I5ossSdTSfe1hFrI32ZnDV6G3D8ky-St4f71fQpXbw8zqeTRWqYhCGtDRVQ1WB4UdU5zXktQOZS5hUVlHOJeWMEE5zXHCUVokQhpQDIKa8iBewimR91a6c3qvd2p_1BOW3Vd8P5Vmk_WLNFJQuUmlc0SmacFaJskIoKATJthGF11Lo-avXefewxDGrj9r6L76uMUSi5gLKM1M2RMt6F4LH5vQpUfTmi_hxhn2Fievs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301945199</pqid></control><display><type>article</type><title>Mapping the Spatial-Temporal Dynamics of Vegetation Response Lag to Drought in a Semi-Arid Region</title><source>ProQuest - Publicly Available Content Database</source><creator>Hua, Li ; Wang, Huidong ; Sui, Haigang ; Wardlow, Brian ; Hayes, Michael J. ; Wang, Jianxun</creator><creatorcontrib>Hua, Li ; Wang, Huidong ; Sui, Haigang ; Wardlow, Brian ; Hayes, Michael J. ; Wang, Jianxun</creatorcontrib><description>Drought, as an extreme climate event, affects the ecological environment for vegetation and agricultural production. Studies of the vegetative response to drought are paramount to providing scientific information for drought risk mitigation. In this paper, the spatial-temporal pattern of drought and the response lag of vegetation in Nebraska were analyzed from 2000 to 2015. Based on the long-term Daymet data set, the standard precipitation index (SPI) was computed to identify precipitation anomalies, and the Gaussian function was applied to obtain temperature anomalies. Vegetation anomaly was identified by dynamic time warping technique using a remote sensing Normalized Difference Vegetation Index (NDVI) time series. Finally, multilayer correlation analysis was applied to obtain the response lag of different vegetation types. The results show that Nebraska suffered severe drought events in 2002 and 2012. The response lag of vegetation to drought typically ranged from 30 to 45 days varying for different vegetation types and human activities (water use and management). Grasslands had the shortest response lag (~35 days), while forests had the longest lag period (~48 days). For specific crop types, the response lag of winter wheat varied among different regions of Nebraska (35–45 days), while soybeans, corn and alfalfa had similar response lag times of approximately 40 days.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs11161873</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural management ; Agricultural production ; Agriculture ; Alfalfa ; Anomalies ; Arid regions ; Arid zones ; Corn ; Correlation analysis ; Crops ; Drought ; drought monitoring ; drought response lag ; DTW ; Ecological monitoring ; Ecosystems ; Environmental risk ; Grasslands ; Laboratories ; lag correlation coefficient ; Land use planning ; Mapping ; Multilayers ; Natural resources ; Normalized difference vegetative index ; Precipitation ; Rain ; Remote sensing ; Risk reduction ; Semi arid areas ; Semiarid lands ; Soybeans ; Standard scores ; Studies ; Time series ; Vegetation ; Vegetation index ; Water shortages ; Water use ; Wheat ; Winter wheat</subject><ispartof>Remote sensing (Basel, Switzerland), 2019-08, Vol.11 (16), p.1873</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-dc051bd1c48bd7074d5167667b050446e7fc53544d4e60559e566511704b66713</citedby><cites>FETCH-LOGICAL-c361t-dc051bd1c48bd7074d5167667b050446e7fc53544d4e60559e566511704b66713</cites><orcidid>0000-0002-0745-035X ; 0000-0002-4767-581X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301945199/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301945199?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Hua, Li</creatorcontrib><creatorcontrib>Wang, Huidong</creatorcontrib><creatorcontrib>Sui, Haigang</creatorcontrib><creatorcontrib>Wardlow, Brian</creatorcontrib><creatorcontrib>Hayes, Michael J.</creatorcontrib><creatorcontrib>Wang, Jianxun</creatorcontrib><title>Mapping the Spatial-Temporal Dynamics of Vegetation Response Lag to Drought in a Semi-Arid Region</title><title>Remote sensing (Basel, Switzerland)</title><description>Drought, as an extreme climate event, affects the ecological environment for vegetation and agricultural production. Studies of the vegetative response to drought are paramount to providing scientific information for drought risk mitigation. In this paper, the spatial-temporal pattern of drought and the response lag of vegetation in Nebraska were analyzed from 2000 to 2015. Based on the long-term Daymet data set, the standard precipitation index (SPI) was computed to identify precipitation anomalies, and the Gaussian function was applied to obtain temperature anomalies. Vegetation anomaly was identified by dynamic time warping technique using a remote sensing Normalized Difference Vegetation Index (NDVI) time series. Finally, multilayer correlation analysis was applied to obtain the response lag of different vegetation types. The results show that Nebraska suffered severe drought events in 2002 and 2012. The response lag of vegetation to drought typically ranged from 30 to 45 days varying for different vegetation types and human activities (water use and management). Grasslands had the shortest response lag (~35 days), while forests had the longest lag period (~48 days). For specific crop types, the response lag of winter wheat varied among different regions of Nebraska (35–45 days), while soybeans, corn and alfalfa had similar response lag times of approximately 40 days.</description><subject>Agricultural management</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Alfalfa</subject><subject>Anomalies</subject><subject>Arid regions</subject><subject>Arid zones</subject><subject>Corn</subject><subject>Correlation analysis</subject><subject>Crops</subject><subject>Drought</subject><subject>drought monitoring</subject><subject>drought response lag</subject><subject>DTW</subject><subject>Ecological monitoring</subject><subject>Ecosystems</subject><subject>Environmental risk</subject><subject>Grasslands</subject><subject>Laboratories</subject><subject>lag correlation coefficient</subject><subject>Land use planning</subject><subject>Mapping</subject><subject>Multilayers</subject><subject>Natural resources</subject><subject>Normalized difference vegetative index</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Remote sensing</subject><subject>Risk reduction</subject><subject>Semi arid areas</subject><subject>Semiarid lands</subject><subject>Soybeans</subject><subject>Standard scores</subject><subject>Studies</subject><subject>Time series</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Water shortages</subject><subject>Water use</subject><subject>Wheat</subject><subject>Winter wheat</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEhPswi-IxA2pEDcfbY_TxsekISQ2uEZp6naZtqYk3WH_nsAQ4Ist-_FrS2-SXAG9Zaykdz4AgIQiZyfJKKN5lvKszE7_1efJOIQNjcEYlJSPEv2s-952LRnWSJa9Hqzepivc9c7rLZkdOr2zJhDXkHdscYhz15FXDL3rApKFjouOzLzbt-uB2I5ossSdTSfe1hFrI32ZnDV6G3D8ky-St4f71fQpXbw8zqeTRWqYhCGtDRVQ1WB4UdU5zXktQOZS5hUVlHOJeWMEE5zXHCUVokQhpQDIKa8iBewimR91a6c3qvd2p_1BOW3Vd8P5Vmk_WLNFJQuUmlc0SmacFaJskIoKATJthGF11Lo-avXefewxDGrj9r6L76uMUSi5gLKM1M2RMt6F4LH5vQpUfTmi_hxhn2Fievs</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hua, Li</creator><creator>Wang, Huidong</creator><creator>Sui, Haigang</creator><creator>Wardlow, Brian</creator><creator>Hayes, Michael J.</creator><creator>Wang, Jianxun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0745-035X</orcidid><orcidid>https://orcid.org/0000-0002-4767-581X</orcidid></search><sort><creationdate>20190801</creationdate><title>Mapping the Spatial-Temporal Dynamics of Vegetation Response Lag to Drought in a Semi-Arid Region</title><author>Hua, Li ; Wang, Huidong ; Sui, Haigang ; Wardlow, Brian ; Hayes, Michael J. ; Wang, Jianxun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-dc051bd1c48bd7074d5167667b050446e7fc53544d4e60559e566511704b66713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural management</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Alfalfa</topic><topic>Anomalies</topic><topic>Arid regions</topic><topic>Arid zones</topic><topic>Corn</topic><topic>Correlation analysis</topic><topic>Crops</topic><topic>Drought</topic><topic>drought monitoring</topic><topic>drought response lag</topic><topic>DTW</topic><topic>Ecological monitoring</topic><topic>Ecosystems</topic><topic>Environmental risk</topic><topic>Grasslands</topic><topic>Laboratories</topic><topic>lag correlation coefficient</topic><topic>Land use planning</topic><topic>Mapping</topic><topic>Multilayers</topic><topic>Natural resources</topic><topic>Normalized difference vegetative index</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Remote sensing</topic><topic>Risk reduction</topic><topic>Semi arid areas</topic><topic>Semiarid lands</topic><topic>Soybeans</topic><topic>Standard scores</topic><topic>Studies</topic><topic>Time series</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Water shortages</topic><topic>Water use</topic><topic>Wheat</topic><topic>Winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Li</creatorcontrib><creatorcontrib>Wang, Huidong</creatorcontrib><creatorcontrib>Sui, Haigang</creatorcontrib><creatorcontrib>Wardlow, Brian</creatorcontrib><creatorcontrib>Hayes, Michael J.</creatorcontrib><creatorcontrib>Wang, Jianxun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Li</au><au>Wang, Huidong</au><au>Sui, Haigang</au><au>Wardlow, Brian</au><au>Hayes, Michael J.</au><au>Wang, Jianxun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Spatial-Temporal Dynamics of Vegetation Response Lag to Drought in a Semi-Arid Region</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>11</volume><issue>16</issue><spage>1873</spage><pages>1873-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Drought, as an extreme climate event, affects the ecological environment for vegetation and agricultural production. Studies of the vegetative response to drought are paramount to providing scientific information for drought risk mitigation. In this paper, the spatial-temporal pattern of drought and the response lag of vegetation in Nebraska were analyzed from 2000 to 2015. Based on the long-term Daymet data set, the standard precipitation index (SPI) was computed to identify precipitation anomalies, and the Gaussian function was applied to obtain temperature anomalies. Vegetation anomaly was identified by dynamic time warping technique using a remote sensing Normalized Difference Vegetation Index (NDVI) time series. Finally, multilayer correlation analysis was applied to obtain the response lag of different vegetation types. The results show that Nebraska suffered severe drought events in 2002 and 2012. The response lag of vegetation to drought typically ranged from 30 to 45 days varying for different vegetation types and human activities (water use and management). Grasslands had the shortest response lag (~35 days), while forests had the longest lag period (~48 days). For specific crop types, the response lag of winter wheat varied among different regions of Nebraska (35–45 days), while soybeans, corn and alfalfa had similar response lag times of approximately 40 days.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs11161873</doi><orcidid>https://orcid.org/0000-0002-0745-035X</orcidid><orcidid>https://orcid.org/0000-0002-4767-581X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2019-08, Vol.11 (16), p.1873
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_68e6a4b07fc243859fe05be112ac5c3d
source ProQuest - Publicly Available Content Database
subjects Agricultural management
Agricultural production
Agriculture
Alfalfa
Anomalies
Arid regions
Arid zones
Corn
Correlation analysis
Crops
Drought
drought monitoring
drought response lag
DTW
Ecological monitoring
Ecosystems
Environmental risk
Grasslands
Laboratories
lag correlation coefficient
Land use planning
Mapping
Multilayers
Natural resources
Normalized difference vegetative index
Precipitation
Rain
Remote sensing
Risk reduction
Semi arid areas
Semiarid lands
Soybeans
Standard scores
Studies
Time series
Vegetation
Vegetation index
Water shortages
Water use
Wheat
Winter wheat
title Mapping the Spatial-Temporal Dynamics of Vegetation Response Lag to Drought in a Semi-Arid Region
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Spatial-Temporal%20Dynamics%20of%20Vegetation%20Response%20Lag%20to%20Drought%20in%20a%20Semi-Arid%20Region&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Hua,%20Li&rft.date=2019-08-01&rft.volume=11&rft.issue=16&rft.spage=1873&rft.pages=1873-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs11161873&rft_dat=%3Cproquest_doaj_%3E2301945199%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-dc051bd1c48bd7074d5167667b050446e7fc53544d4e60559e566511704b66713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301945199&rft_id=info:pmid/&rfr_iscdi=true