Loading…
Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values
The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phen...
Saved in:
Published in: | AppliedMath 2024-09, Vol.4 (3), p.1128-1142 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13 |
container_end_page | 1142 |
container_issue | 3 |
container_start_page | 1128 |
container_title | AppliedMath |
container_volume | 4 |
creator | Brilhante, M. Fátima Gomes, M. Ivette Mendonça, Sandra Pestana, Dinis Santos, Rui |
description | The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phenomenon known as publication bias, which generally results from the publication of studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting the smallest of the two observed p-values, to increase the chances of their work being published. However, when such “fake p-values” exist, they tamper with the statistic T(P1,…,Pn) because they are observations from a Beta(1,2) distribution. If present, the right model for the random variables Pk is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed, and it is shown how quantiles of classical combining test statistics, allowing a small number of fake p-values, can be used to make an informed decision when jointly combining fake (from Two P) and genuine (from not Two P) p-values. |
doi_str_mv | 10.3390/appliedmath4030060 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68f3182c06474a579cf56847bd810560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68f3182c06474a579cf56847bd810560</doaj_id><sourcerecordid>oai_doaj_org_article_68f3182c06474a579cf56847bd810560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13</originalsourceid><addsrcrecordid>eNplkFtLw0AQhRdRsNT-AZ_2D0R3s3ffpNhaqBdK7WuYvaRuTbIlSRH_vdGKCD6dOYfhY-YgdEnJFWOGXMN-X8Xga-hfOWGESHKCRrlULDOGmNM_8zmadN2OEJJroZjSI7Ravyf8jFOLH1OPv80NfgiNDxVeQeNTjTfQRrBV6HBs8DTVNjax2eIZvAU8bOB5aA6xCXifbaA6hO4CnZVQdWHyo2P0MrtbT--z5dN8Mb1dZi5nus-s05aXTBnmheSMlWQ4kwbPlQPvvfGlAa-DUD63lnkqxPAZMEclFZZ7ysZoceT6BLti38Ya2o8iQSy-g9RuC2j76KpQSF0yqnNHJFcchDKuFFJzZb2mREgysPIjy7Wp69pQ_vIoKb5KLv6XzD4BiiJwaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><creator>Brilhante, M. Fátima ; Gomes, M. Ivette ; Mendonça, Sandra ; Pestana, Dinis ; Santos, Rui</creator><creatorcontrib>Brilhante, M. Fátima ; Gomes, M. Ivette ; Mendonça, Sandra ; Pestana, Dinis ; Santos, Rui</creatorcontrib><description>The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phenomenon known as publication bias, which generally results from the publication of studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting the smallest of the two observed p-values, to increase the chances of their work being published. However, when such “fake p-values” exist, they tamper with the statistic T(P1,…,Pn) because they are observations from a Beta(1,2) distribution. If present, the right model for the random variables Pk is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed, and it is shown how quantiles of classical combining test statistics, allowing a small number of fake p-values, can be used to make an informed decision when jointly combining fake (from Two P) and genuine (from not Two P) p-values.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath4030060</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>combined p-values ; fake p-values ; Mendel random variables</subject><ispartof>AppliedMath, 2024-09, Vol.4 (3), p.1128-1142</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13</cites><orcidid>0000-0003-3364-0357 ; 0000-0001-9276-7011 ; 0000-0002-2903-6993 ; 0000-0002-7371-363X ; 0000-0001-8999-1354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Brilhante, M. Fátima</creatorcontrib><creatorcontrib>Gomes, M. Ivette</creatorcontrib><creatorcontrib>Mendonça, Sandra</creatorcontrib><creatorcontrib>Pestana, Dinis</creatorcontrib><creatorcontrib>Santos, Rui</creatorcontrib><title>Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values</title><title>AppliedMath</title><description>The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phenomenon known as publication bias, which generally results from the publication of studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting the smallest of the two observed p-values, to increase the chances of their work being published. However, when such “fake p-values” exist, they tamper with the statistic T(P1,…,Pn) because they are observations from a Beta(1,2) distribution. If present, the right model for the random variables Pk is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed, and it is shown how quantiles of classical combining test statistics, allowing a small number of fake p-values, can be used to make an informed decision when jointly combining fake (from Two P) and genuine (from not Two P) p-values.</description><subject>combined p-values</subject><subject>fake p-values</subject><subject>Mendel random variables</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkFtLw0AQhRdRsNT-AZ_2D0R3s3ffpNhaqBdK7WuYvaRuTbIlSRH_vdGKCD6dOYfhY-YgdEnJFWOGXMN-X8Xga-hfOWGESHKCRrlULDOGmNM_8zmadN2OEJJroZjSI7Ravyf8jFOLH1OPv80NfgiNDxVeQeNTjTfQRrBV6HBs8DTVNjax2eIZvAU8bOB5aA6xCXifbaA6hO4CnZVQdWHyo2P0MrtbT--z5dN8Mb1dZi5nus-s05aXTBnmheSMlWQ4kwbPlQPvvfGlAa-DUD63lnkqxPAZMEclFZZ7ysZoceT6BLti38Ya2o8iQSy-g9RuC2j76KpQSF0yqnNHJFcchDKuFFJzZb2mREgysPIjy7Wp69pQ_vIoKb5KLv6XzD4BiiJwaw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Brilhante, M. Fátima</creator><creator>Gomes, M. Ivette</creator><creator>Mendonça, Sandra</creator><creator>Pestana, Dinis</creator><creator>Santos, Rui</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3364-0357</orcidid><orcidid>https://orcid.org/0000-0001-9276-7011</orcidid><orcidid>https://orcid.org/0000-0002-2903-6993</orcidid><orcidid>https://orcid.org/0000-0002-7371-363X</orcidid><orcidid>https://orcid.org/0000-0001-8999-1354</orcidid></search><sort><creationdate>20240901</creationdate><title>Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values</title><author>Brilhante, M. Fátima ; Gomes, M. Ivette ; Mendonça, Sandra ; Pestana, Dinis ; Santos, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>combined p-values</topic><topic>fake p-values</topic><topic>Mendel random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brilhante, M. Fátima</creatorcontrib><creatorcontrib>Gomes, M. Ivette</creatorcontrib><creatorcontrib>Mendonça, Sandra</creatorcontrib><creatorcontrib>Pestana, Dinis</creatorcontrib><creatorcontrib>Santos, Rui</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brilhante, M. Fátima</au><au>Gomes, M. Ivette</au><au>Mendonça, Sandra</au><au>Pestana, Dinis</au><au>Santos, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values</atitle><jtitle>AppliedMath</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>4</volume><issue>3</issue><spage>1128</spage><epage>1142</epage><pages>1128-1142</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phenomenon known as publication bias, which generally results from the publication of studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting the smallest of the two observed p-values, to increase the chances of their work being published. However, when such “fake p-values” exist, they tamper with the statistic T(P1,…,Pn) because they are observations from a Beta(1,2) distribution. If present, the right model for the random variables Pk is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed, and it is shown how quantiles of classical combining test statistics, allowing a small number of fake p-values, can be used to make an informed decision when jointly combining fake (from Two P) and genuine (from not Two P) p-values.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath4030060</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3364-0357</orcidid><orcidid>https://orcid.org/0000-0001-9276-7011</orcidid><orcidid>https://orcid.org/0000-0002-2903-6993</orcidid><orcidid>https://orcid.org/0000-0002-7371-363X</orcidid><orcidid>https://orcid.org/0000-0001-8999-1354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2024-09, Vol.4 (3), p.1128-1142 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_68f3182c06474a579cf56847bd810560 |
source | Open Access: DOAJ - Directory of Open Access Journals |
subjects | combined p-values fake p-values Mendel random variables |
title | Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20P%20or%20Not%20Two%20P:%20Mendel%20Random%20Variables%20in%20Combining%20Fake%20and%20Genuine%20p-Values&rft.jtitle=AppliedMath&rft.au=Brilhante,%20M.%20F%C3%A1tima&rft.date=2024-09-01&rft.volume=4&rft.issue=3&rft.spage=1128&rft.epage=1142&rft.pages=1128-1142&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath4030060&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_68f3182c06474a579cf56847bd810560%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |