Loading…

Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values

The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phen...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2024-09, Vol.4 (3), p.1128-1142
Main Authors: Brilhante, M. Fátima, Gomes, M. Ivette, Mendonça, Sandra, Pestana, Dinis, Santos, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13
container_end_page 1142
container_issue 3
container_start_page 1128
container_title AppliedMath
container_volume 4
creator Brilhante, M. Fátima
Gomes, M. Ivette
Mendonça, Sandra
Pestana, Dinis
Santos, Rui
description The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phenomenon known as publication bias, which generally results from the publication of studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting the smallest of the two observed p-values, to increase the chances of their work being published. However, when such “fake p-values” exist, they tamper with the statistic T(P1,…,Pn) because they are observations from a Beta(1,2) distribution. If present, the right model for the random variables Pk is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed, and it is shown how quantiles of classical combining test statistics, allowing a small number of fake p-values, can be used to make an informed decision when jointly combining fake (from Two P) and genuine (from not Two P) p-values.
doi_str_mv 10.3390/appliedmath4030060
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68f3182c06474a579cf56847bd810560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68f3182c06474a579cf56847bd810560</doaj_id><sourcerecordid>oai_doaj_org_article_68f3182c06474a579cf56847bd810560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13</originalsourceid><addsrcrecordid>eNplkFtLw0AQhRdRsNT-AZ_2D0R3s3ffpNhaqBdK7WuYvaRuTbIlSRH_vdGKCD6dOYfhY-YgdEnJFWOGXMN-X8Xga-hfOWGESHKCRrlULDOGmNM_8zmadN2OEJJroZjSI7Ravyf8jFOLH1OPv80NfgiNDxVeQeNTjTfQRrBV6HBs8DTVNjax2eIZvAU8bOB5aA6xCXifbaA6hO4CnZVQdWHyo2P0MrtbT--z5dN8Mb1dZi5nus-s05aXTBnmheSMlWQ4kwbPlQPvvfGlAa-DUD63lnkqxPAZMEclFZZ7ysZoceT6BLti38Ya2o8iQSy-g9RuC2j76KpQSF0yqnNHJFcchDKuFFJzZb2mREgysPIjy7Wp69pQ_vIoKb5KLv6XzD4BiiJwaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><creator>Brilhante, M. Fátima ; Gomes, M. Ivette ; Mendonça, Sandra ; Pestana, Dinis ; Santos, Rui</creator><creatorcontrib>Brilhante, M. Fátima ; Gomes, M. Ivette ; Mendonça, Sandra ; Pestana, Dinis ; Santos, Rui</creatorcontrib><description>The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phenomenon known as publication bias, which generally results from the publication of studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting the smallest of the two observed p-values, to increase the chances of their work being published. However, when such “fake p-values” exist, they tamper with the statistic T(P1,…,Pn) because they are observations from a Beta(1,2) distribution. If present, the right model for the random variables Pk is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed, and it is shown how quantiles of classical combining test statistics, allowing a small number of fake p-values, can be used to make an informed decision when jointly combining fake (from Two P) and genuine (from not Two P) p-values.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath4030060</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>combined p-values ; fake p-values ; Mendel random variables</subject><ispartof>AppliedMath, 2024-09, Vol.4 (3), p.1128-1142</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13</cites><orcidid>0000-0003-3364-0357 ; 0000-0001-9276-7011 ; 0000-0002-2903-6993 ; 0000-0002-7371-363X ; 0000-0001-8999-1354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Brilhante, M. Fátima</creatorcontrib><creatorcontrib>Gomes, M. Ivette</creatorcontrib><creatorcontrib>Mendonça, Sandra</creatorcontrib><creatorcontrib>Pestana, Dinis</creatorcontrib><creatorcontrib>Santos, Rui</creatorcontrib><title>Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values</title><title>AppliedMath</title><description>The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phenomenon known as publication bias, which generally results from the publication of studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting the smallest of the two observed p-values, to increase the chances of their work being published. However, when such “fake p-values” exist, they tamper with the statistic T(P1,…,Pn) because they are observations from a Beta(1,2) distribution. If present, the right model for the random variables Pk is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed, and it is shown how quantiles of classical combining test statistics, allowing a small number of fake p-values, can be used to make an informed decision when jointly combining fake (from Two P) and genuine (from not Two P) p-values.</description><subject>combined p-values</subject><subject>fake p-values</subject><subject>Mendel random variables</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkFtLw0AQhRdRsNT-AZ_2D0R3s3ffpNhaqBdK7WuYvaRuTbIlSRH_vdGKCD6dOYfhY-YgdEnJFWOGXMN-X8Xga-hfOWGESHKCRrlULDOGmNM_8zmadN2OEJJroZjSI7Ravyf8jFOLH1OPv80NfgiNDxVeQeNTjTfQRrBV6HBs8DTVNjax2eIZvAU8bOB5aA6xCXifbaA6hO4CnZVQdWHyo2P0MrtbT--z5dN8Mb1dZi5nus-s05aXTBnmheSMlWQ4kwbPlQPvvfGlAa-DUD63lnkqxPAZMEclFZZ7ysZoceT6BLti38Ya2o8iQSy-g9RuC2j76KpQSF0yqnNHJFcchDKuFFJzZb2mREgysPIjy7Wp69pQ_vIoKb5KLv6XzD4BiiJwaw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Brilhante, M. Fátima</creator><creator>Gomes, M. Ivette</creator><creator>Mendonça, Sandra</creator><creator>Pestana, Dinis</creator><creator>Santos, Rui</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3364-0357</orcidid><orcidid>https://orcid.org/0000-0001-9276-7011</orcidid><orcidid>https://orcid.org/0000-0002-2903-6993</orcidid><orcidid>https://orcid.org/0000-0002-7371-363X</orcidid><orcidid>https://orcid.org/0000-0001-8999-1354</orcidid></search><sort><creationdate>20240901</creationdate><title>Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values</title><author>Brilhante, M. Fátima ; Gomes, M. Ivette ; Mendonça, Sandra ; Pestana, Dinis ; Santos, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>combined p-values</topic><topic>fake p-values</topic><topic>Mendel random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brilhante, M. Fátima</creatorcontrib><creatorcontrib>Gomes, M. Ivette</creatorcontrib><creatorcontrib>Mendonça, Sandra</creatorcontrib><creatorcontrib>Pestana, Dinis</creatorcontrib><creatorcontrib>Santos, Rui</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brilhante, M. Fátima</au><au>Gomes, M. Ivette</au><au>Mendonça, Sandra</au><au>Pestana, Dinis</au><au>Santos, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values</atitle><jtitle>AppliedMath</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>4</volume><issue>3</issue><spage>1128</spage><epage>1142</epage><pages>1128-1142</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>The classical tests for combining p-values use suitable statistics T(P1,…,Pn), which are based on the assumption that the observed p-values are genuine, i.e., under null hypotheses, are observations from independent and identically distributed Uniform(0,1) random variables P1,…,Pn. However, the phenomenon known as publication bias, which generally results from the publication of studies that reject null hypotheses of no effect or no difference, can tempt researchers to replicate their experiments, generally no more than once, with the aim of obtaining “better” p-values and reporting the smallest of the two observed p-values, to increase the chances of their work being published. However, when such “fake p-values” exist, they tamper with the statistic T(P1,…,Pn) because they are observations from a Beta(1,2) distribution. If present, the right model for the random variables Pk is described as a tilted Uniform distribution, also called a Mendel distribution, since it was underlying Fisher’s critique of Mendel’s work. Therefore, methods for combining genuine p-values are reviewed, and it is shown how quantiles of classical combining test statistics, allowing a small number of fake p-values, can be used to make an informed decision when jointly combining fake (from Two P) and genuine (from not Two P) p-values.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath4030060</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3364-0357</orcidid><orcidid>https://orcid.org/0000-0001-9276-7011</orcidid><orcidid>https://orcid.org/0000-0002-2903-6993</orcidid><orcidid>https://orcid.org/0000-0002-7371-363X</orcidid><orcidid>https://orcid.org/0000-0001-8999-1354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-9909
ispartof AppliedMath, 2024-09, Vol.4 (3), p.1128-1142
issn 2673-9909
2673-9909
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_68f3182c06474a579cf56847bd810560
source Open Access: DOAJ - Directory of Open Access Journals
subjects combined p-values
fake p-values
Mendel random variables
title Two P or Not Two P: Mendel Random Variables in Combining Fake and Genuine p-Values
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20P%20or%20Not%20Two%20P:%20Mendel%20Random%20Variables%20in%20Combining%20Fake%20and%20Genuine%20p-Values&rft.jtitle=AppliedMath&rft.au=Brilhante,%20M.%20F%C3%A1tima&rft.date=2024-09-01&rft.volume=4&rft.issue=3&rft.spage=1128&rft.epage=1142&rft.pages=1128-1142&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath4030060&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_68f3182c06474a579cf56847bd810560%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-bc8b4f3793d56433f02671ed47caddd9df9ad8e57d2bb3d155006a3c1615b4d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true