Loading…
Machine learning partners in criminal networks
Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that str...
Saved in:
Published in: | Scientific reports 2022-09, Vol.12 (1), p.15746-15746, Article 15746 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63 |
container_end_page | 15746 |
container_issue | 1 |
container_start_page | 15746 |
container_title | Scientific reports |
container_volume | 12 |
creator | Lopes, Diego D. Cunha, Bruno R. da Martins, Alvaro F. Gonçalves, Sebastián Lenzi, Ervin K. Hanley, Quentin S. Perc, Matjaž Ribeiro, Haroldo V. |
description | Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior. |
doi_str_mv | 10.1038/s41598-022-20025-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68fcc539bfd841be9e4ebad3c8ed80ae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68fcc539bfd841be9e4ebad3c8ed80ae</doaj_id><sourcerecordid>2716400720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhgexYKn9A10NuHEzNSff2QhS_ChU3Og6ZJIzt7nOTa7JXC_-e9NOUeui2SQkz3l4ydt1F0AugTD9pnIQRg-E0oESQsVwfNadUsLFQBmlz_85v-jOa92StgQ1HMxpd_nZ-duYsJ_RlRTTpt-7siQstY-p9yXuYnJzn3A55vK9vuxOJjdXPH_Yz7pvH95_vfo03Hz5eH317mbwAtQyjCEgSg8ojZRiVEw6oh0JhCkdwIOaQBOgQUo3cqG8cOAAPBVcBiInyc6669UbstvafYvhyi-bXbT3F7lsbIsZ_YxW6sl7wcw4Bc1hRIMcRxeY1xg0cdhcb1fX_jDuMHhMS3HzI-njlxRv7Sb_tIYbqqRqgtcPgpJ_HLAudherx3l2CfOhWqpAGgZa8oa--g_d5kNpP7hSnBBFSaPoSvmSay04_QkDxN5VatdKbavU3ldqj22IrUO1wWmD5a_6ianfqeGklQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716400720</pqid></control><display><type>article</type><title>Machine learning partners in criminal networks</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lopes, Diego D. ; Cunha, Bruno R. da ; Martins, Alvaro F. ; Gonçalves, Sebastián ; Lenzi, Ervin K. ; Hanley, Quentin S. ; Perc, Matjaž ; Ribeiro, Haroldo V.</creator><creatorcontrib>Lopes, Diego D. ; Cunha, Bruno R. da ; Martins, Alvaro F. ; Gonçalves, Sebastián ; Lenzi, Ervin K. ; Hanley, Quentin S. ; Perc, Matjaž ; Ribeiro, Haroldo V.</creatorcontrib><description>Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-20025-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/530/2801 ; 639/766/530/2803 ; Accuracy ; Bank robberies ; Corruption ; Crime ; Criminal investigations ; Criminology ; Graph representations ; Humanities and Social Sciences ; Intelligence ; Learning algorithms ; Machine learning ; Money laundering ; multidisciplinary ; Police ; Scandals ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2022-09, Vol.12 (1), p.15746-15746, Article 15746</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63</citedby><cites>FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716400720/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716400720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Lopes, Diego D.</creatorcontrib><creatorcontrib>Cunha, Bruno R. da</creatorcontrib><creatorcontrib>Martins, Alvaro F.</creatorcontrib><creatorcontrib>Gonçalves, Sebastián</creatorcontrib><creatorcontrib>Lenzi, Ervin K.</creatorcontrib><creatorcontrib>Hanley, Quentin S.</creatorcontrib><creatorcontrib>Perc, Matjaž</creatorcontrib><creatorcontrib>Ribeiro, Haroldo V.</creatorcontrib><title>Machine learning partners in criminal networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.</description><subject>639/766/530/2801</subject><subject>639/766/530/2803</subject><subject>Accuracy</subject><subject>Bank robberies</subject><subject>Corruption</subject><subject>Crime</subject><subject>Criminal investigations</subject><subject>Criminology</subject><subject>Graph representations</subject><subject>Humanities and Social Sciences</subject><subject>Intelligence</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Money laundering</subject><subject>multidisciplinary</subject><subject>Police</subject><subject>Scandals</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rFTEUhgexYKn9A10NuHEzNSff2QhS_ChU3Og6ZJIzt7nOTa7JXC_-e9NOUeui2SQkz3l4ydt1F0AugTD9pnIQRg-E0oESQsVwfNadUsLFQBmlz_85v-jOa92StgQ1HMxpd_nZ-duYsJ_RlRTTpt-7siQstY-p9yXuYnJzn3A55vK9vuxOJjdXPH_Yz7pvH95_vfo03Hz5eH317mbwAtQyjCEgSg8ojZRiVEw6oh0JhCkdwIOaQBOgQUo3cqG8cOAAPBVcBiInyc6669UbstvafYvhyi-bXbT3F7lsbIsZ_YxW6sl7wcw4Bc1hRIMcRxeY1xg0cdhcb1fX_jDuMHhMS3HzI-njlxRv7Sb_tIYbqqRqgtcPgpJ_HLAudherx3l2CfOhWqpAGgZa8oa--g_d5kNpP7hSnBBFSaPoSvmSay04_QkDxN5VatdKbavU3ldqj22IrUO1wWmD5a_6ianfqeGklQ</recordid><startdate>20220921</startdate><enddate>20220921</enddate><creator>Lopes, Diego D.</creator><creator>Cunha, Bruno R. da</creator><creator>Martins, Alvaro F.</creator><creator>Gonçalves, Sebastián</creator><creator>Lenzi, Ervin K.</creator><creator>Hanley, Quentin S.</creator><creator>Perc, Matjaž</creator><creator>Ribeiro, Haroldo V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220921</creationdate><title>Machine learning partners in criminal networks</title><author>Lopes, Diego D. ; Cunha, Bruno R. da ; Martins, Alvaro F. ; Gonçalves, Sebastián ; Lenzi, Ervin K. ; Hanley, Quentin S. ; Perc, Matjaž ; Ribeiro, Haroldo V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/530/2801</topic><topic>639/766/530/2803</topic><topic>Accuracy</topic><topic>Bank robberies</topic><topic>Corruption</topic><topic>Crime</topic><topic>Criminal investigations</topic><topic>Criminology</topic><topic>Graph representations</topic><topic>Humanities and Social Sciences</topic><topic>Intelligence</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Money laundering</topic><topic>multidisciplinary</topic><topic>Police</topic><topic>Scandals</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Diego D.</creatorcontrib><creatorcontrib>Cunha, Bruno R. da</creatorcontrib><creatorcontrib>Martins, Alvaro F.</creatorcontrib><creatorcontrib>Gonçalves, Sebastián</creatorcontrib><creatorcontrib>Lenzi, Ervin K.</creatorcontrib><creatorcontrib>Hanley, Quentin S.</creatorcontrib><creatorcontrib>Perc, Matjaž</creatorcontrib><creatorcontrib>Ribeiro, Haroldo V.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Diego D.</au><au>Cunha, Bruno R. da</au><au>Martins, Alvaro F.</au><au>Gonçalves, Sebastián</au><au>Lenzi, Ervin K.</au><au>Hanley, Quentin S.</au><au>Perc, Matjaž</au><au>Ribeiro, Haroldo V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning partners in criminal networks</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2022-09-21</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>15746</spage><epage>15746</epage><pages>15746-15746</pages><artnum>15746</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41598-022-20025-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-09, Vol.12 (1), p.15746-15746, Article 15746 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_68fcc539bfd841be9e4ebad3c8ed80ae |
source | Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/530/2801 639/766/530/2803 Accuracy Bank robberies Corruption Crime Criminal investigations Criminology Graph representations Humanities and Social Sciences Intelligence Learning algorithms Machine learning Money laundering multidisciplinary Police Scandals Science Science (multidisciplinary) |
title | Machine learning partners in criminal networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20partners%20in%20criminal%20networks&rft.jtitle=Scientific%20reports&rft.au=Lopes,%20Diego%20D.&rft.date=2022-09-21&rft.volume=12&rft.issue=1&rft.spage=15746&rft.epage=15746&rft.pages=15746-15746&rft.artnum=15746&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-20025-w&rft_dat=%3Cproquest_doaj_%3E2716400720%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716400720&rft_id=info:pmid/&rfr_iscdi=true |