Loading…

Machine learning partners in criminal networks

Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that str...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-09, Vol.12 (1), p.15746-15746, Article 15746
Main Authors: Lopes, Diego D., Cunha, Bruno R. da, Martins, Alvaro F., Gonçalves, Sebastián, Lenzi, Ervin K., Hanley, Quentin S., Perc, Matjaž, Ribeiro, Haroldo V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63
cites cdi_FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63
container_end_page 15746
container_issue 1
container_start_page 15746
container_title Scientific reports
container_volume 12
creator Lopes, Diego D.
Cunha, Bruno R. da
Martins, Alvaro F.
Gonçalves, Sebastián
Lenzi, Ervin K.
Hanley, Quentin S.
Perc, Matjaž
Ribeiro, Haroldo V.
description Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.
doi_str_mv 10.1038/s41598-022-20025-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_68fcc539bfd841be9e4ebad3c8ed80ae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_68fcc539bfd841be9e4ebad3c8ed80ae</doaj_id><sourcerecordid>2716400720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhgexYKn9A10NuHEzNSff2QhS_ChU3Og6ZJIzt7nOTa7JXC_-e9NOUeui2SQkz3l4ydt1F0AugTD9pnIQRg-E0oESQsVwfNadUsLFQBmlz_85v-jOa92StgQ1HMxpd_nZ-duYsJ_RlRTTpt-7siQstY-p9yXuYnJzn3A55vK9vuxOJjdXPH_Yz7pvH95_vfo03Hz5eH317mbwAtQyjCEgSg8ojZRiVEw6oh0JhCkdwIOaQBOgQUo3cqG8cOAAPBVcBiInyc6669UbstvafYvhyi-bXbT3F7lsbIsZ_YxW6sl7wcw4Bc1hRIMcRxeY1xg0cdhcb1fX_jDuMHhMS3HzI-njlxRv7Sb_tIYbqqRqgtcPgpJ_HLAudherx3l2CfOhWqpAGgZa8oa--g_d5kNpP7hSnBBFSaPoSvmSay04_QkDxN5VatdKbavU3ldqj22IrUO1wWmD5a_6ianfqeGklQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716400720</pqid></control><display><type>article</type><title>Machine learning partners in criminal networks</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lopes, Diego D. ; Cunha, Bruno R. da ; Martins, Alvaro F. ; Gonçalves, Sebastián ; Lenzi, Ervin K. ; Hanley, Quentin S. ; Perc, Matjaž ; Ribeiro, Haroldo V.</creator><creatorcontrib>Lopes, Diego D. ; Cunha, Bruno R. da ; Martins, Alvaro F. ; Gonçalves, Sebastián ; Lenzi, Ervin K. ; Hanley, Quentin S. ; Perc, Matjaž ; Ribeiro, Haroldo V.</creatorcontrib><description>Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-20025-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/530/2801 ; 639/766/530/2803 ; Accuracy ; Bank robberies ; Corruption ; Crime ; Criminal investigations ; Criminology ; Graph representations ; Humanities and Social Sciences ; Intelligence ; Learning algorithms ; Machine learning ; Money laundering ; multidisciplinary ; Police ; Scandals ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2022-09, Vol.12 (1), p.15746-15746, Article 15746</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63</citedby><cites>FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716400720/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716400720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Lopes, Diego D.</creatorcontrib><creatorcontrib>Cunha, Bruno R. da</creatorcontrib><creatorcontrib>Martins, Alvaro F.</creatorcontrib><creatorcontrib>Gonçalves, Sebastián</creatorcontrib><creatorcontrib>Lenzi, Ervin K.</creatorcontrib><creatorcontrib>Hanley, Quentin S.</creatorcontrib><creatorcontrib>Perc, Matjaž</creatorcontrib><creatorcontrib>Ribeiro, Haroldo V.</creatorcontrib><title>Machine learning partners in criminal networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.</description><subject>639/766/530/2801</subject><subject>639/766/530/2803</subject><subject>Accuracy</subject><subject>Bank robberies</subject><subject>Corruption</subject><subject>Crime</subject><subject>Criminal investigations</subject><subject>Criminology</subject><subject>Graph representations</subject><subject>Humanities and Social Sciences</subject><subject>Intelligence</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Money laundering</subject><subject>multidisciplinary</subject><subject>Police</subject><subject>Scandals</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rFTEUhgexYKn9A10NuHEzNSff2QhS_ChU3Og6ZJIzt7nOTa7JXC_-e9NOUeui2SQkz3l4ydt1F0AugTD9pnIQRg-E0oESQsVwfNadUsLFQBmlz_85v-jOa92StgQ1HMxpd_nZ-duYsJ_RlRTTpt-7siQstY-p9yXuYnJzn3A55vK9vuxOJjdXPH_Yz7pvH95_vfo03Hz5eH317mbwAtQyjCEgSg8ojZRiVEw6oh0JhCkdwIOaQBOgQUo3cqG8cOAAPBVcBiInyc6669UbstvafYvhyi-bXbT3F7lsbIsZ_YxW6sl7wcw4Bc1hRIMcRxeY1xg0cdhcb1fX_jDuMHhMS3HzI-njlxRv7Sb_tIYbqqRqgtcPgpJ_HLAudherx3l2CfOhWqpAGgZa8oa--g_d5kNpP7hSnBBFSaPoSvmSay04_QkDxN5VatdKbavU3ldqj22IrUO1wWmD5a_6ianfqeGklQ</recordid><startdate>20220921</startdate><enddate>20220921</enddate><creator>Lopes, Diego D.</creator><creator>Cunha, Bruno R. da</creator><creator>Martins, Alvaro F.</creator><creator>Gonçalves, Sebastián</creator><creator>Lenzi, Ervin K.</creator><creator>Hanley, Quentin S.</creator><creator>Perc, Matjaž</creator><creator>Ribeiro, Haroldo V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220921</creationdate><title>Machine learning partners in criminal networks</title><author>Lopes, Diego D. ; Cunha, Bruno R. da ; Martins, Alvaro F. ; Gonçalves, Sebastián ; Lenzi, Ervin K. ; Hanley, Quentin S. ; Perc, Matjaž ; Ribeiro, Haroldo V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/530/2801</topic><topic>639/766/530/2803</topic><topic>Accuracy</topic><topic>Bank robberies</topic><topic>Corruption</topic><topic>Crime</topic><topic>Criminal investigations</topic><topic>Criminology</topic><topic>Graph representations</topic><topic>Humanities and Social Sciences</topic><topic>Intelligence</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Money laundering</topic><topic>multidisciplinary</topic><topic>Police</topic><topic>Scandals</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Diego D.</creatorcontrib><creatorcontrib>Cunha, Bruno R. da</creatorcontrib><creatorcontrib>Martins, Alvaro F.</creatorcontrib><creatorcontrib>Gonçalves, Sebastián</creatorcontrib><creatorcontrib>Lenzi, Ervin K.</creatorcontrib><creatorcontrib>Hanley, Quentin S.</creatorcontrib><creatorcontrib>Perc, Matjaž</creatorcontrib><creatorcontrib>Ribeiro, Haroldo V.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Diego D.</au><au>Cunha, Bruno R. da</au><au>Martins, Alvaro F.</au><au>Gonçalves, Sebastián</au><au>Lenzi, Ervin K.</au><au>Hanley, Quentin S.</au><au>Perc, Matjaž</au><au>Ribeiro, Haroldo V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning partners in criminal networks</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2022-09-21</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>15746</spage><epage>15746</epage><pages>15746-15746</pages><artnum>15746</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among different types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with significant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41598-022-20025-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-09, Vol.12 (1), p.15746-15746, Article 15746
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_68fcc539bfd841be9e4ebad3c8ed80ae
source Open Access: PubMed Central; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/530/2801
639/766/530/2803
Accuracy
Bank robberies
Corruption
Crime
Criminal investigations
Criminology
Graph representations
Humanities and Social Sciences
Intelligence
Learning algorithms
Machine learning
Money laundering
multidisciplinary
Police
Scandals
Science
Science (multidisciplinary)
title Machine learning partners in criminal networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20partners%20in%20criminal%20networks&rft.jtitle=Scientific%20reports&rft.au=Lopes,%20Diego%20D.&rft.date=2022-09-21&rft.volume=12&rft.issue=1&rft.spage=15746&rft.epage=15746&rft.pages=15746-15746&rft.artnum=15746&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-20025-w&rft_dat=%3Cproquest_doaj_%3E2716400720%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-bddee6c1e69665b736a08a0d0378d1c17f18012d66ab457c5a1a11c2546d06f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716400720&rft_id=info:pmid/&rfr_iscdi=true