Loading…

Extraction of Proanthocyanidins from Chinese Wild Rice ( Zizania latifolia ) and Analyses of Structural Composition and Potential Bioactivities of Different Fractions

Due to the importance of proanthocyanidin bioactivity and its relationship with chemical structure, ultrasound-assisted extraction and purification schemes were proposed to evaluate the proanthocyanidin content and analyze the structural composition and potential bioactivities of different proanthoc...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2019-04, Vol.24 (9), p.1681
Main Authors: Chu, Mei-Jun, Du, Yong-Mei, Liu, Xin-Min, Yan, Ning, Wang, Feng-Zhong, Zhang, Zhong-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the importance of proanthocyanidin bioactivity and its relationship with chemical structure, ultrasound-assisted extraction and purification schemes were proposed to evaluate the proanthocyanidin content and analyze the structural composition and potential bioactivities of different proanthocyanidin fractions from Chinese wild rice ( ). Following an optimized extraction procedure, the crude wild rice proanthocyanidins (WRPs) were purified using n-butanol extraction, chromatography on macroporous resins, and further fractionation on Sephadex LH-20 to yield six specific fractions (WRPs-1-WRPs-6) containing proanthocyanidin levels exceeding 524.19 ± 3.56 mg/g extract. Structurally, (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin were present as both terminal and extension units, and (-)-epicatechin was the major extension unit, in each fraction. This is the first preparation of WRP fractions with a different mean degree of polymerization (mDP), ranging from 2.66 ± 0.04 to 10.30 ± 0.46. A comparison of the bioactivities of these fractions revealed that fractions WRPs-1-WRPs-5 had significant DPPH radical scavenging activities, whereas fraction WRPs-6 with a high mDP showed better α-glucosidase and pancreatic lipase inhibitory effects. These findings should help define possible applications of WRPs to functional foods or nutraceuticals.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24091681