Loading…

Terahertz waveform synthesis in integrated thin-film lithium niobate platform

Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applica...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-01, Vol.14 (1), p.11-9, Article 11
Main Authors: Herter, Alexa, Shams-Ansari, Amirhassan, Settembrini, Francesca Fabiana, Warner, Hana K., Faist, Jérôme, Lončar, Marko, Benea-Chelmus, Ileana-Cristina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83
cites cdi_FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83
container_end_page 9
container_issue 1
container_start_page 11
container_title Nature communications
container_volume 14
creator Herter, Alexa
Shams-Ansari, Amirhassan
Settembrini, Francesca Fabiana
Warner, Hana K.
Faist, Jérôme
Lončar, Marko
Benea-Chelmus, Ileana-Cristina
description Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m −1 with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ. Miniaturized platforms are desirable for terahertz applications. Here the authors demonstrate chip-scale THz generation with controllable waveforms using thin-film lithium niobate.
doi_str_mv 10.1038/s41467-022-35517-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_691d90d7acd64f32a40bd525336e7e63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_691d90d7acd64f32a40bd525336e7e63</doaj_id><sourcerecordid>2761182073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAInHhEvC3nQsSqmipVMSlnC3Hnux6lcSL7RSVX4-3KaXlgGXJI887z4z9IvSa4PcEM_0hc8KlajGlLROCqFY-Q8cUc9ISRdnzR_EROs15h-tiHdGcv0RHTIqu00wfo6_XkOwWUvnV_LQ3MMQ0Nfl2LlvIITdhrrvAJtkCvinbMLdDGKdmDDVepmYOsa-pZj_acih9hV4Mdsxwen-eoO_nn6_PvrRX3y4uzz5dtU5wXFonnfCk4z2A5VoD01pw2QvGhOu56AbKgXpBwXbEE28B6971jgxM9YqBZifocuX6aHdmn8Jk062JNpi7i5g2xqYS3AhGVkSHvbLOSz4wajnuK7r2kqBAssr6uLL2Sz-BdzCXZMcn0KeZOWzNJt6YThPaKVUB7-4BKf5YIBczhexgHO0MccmGKkmIplgder39R7qLS5rrVx1UVYElJlVFV5VLMecEw8MwBJuD-WY131TzzZ35RtaiN4-f8VDyx-oqYKsg19S8gfS393-wvwGoXLs8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760730601</pqid></control><display><type>article</type><title>Terahertz waveform synthesis in integrated thin-film lithium niobate platform</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Herter, Alexa ; Shams-Ansari, Amirhassan ; Settembrini, Francesca Fabiana ; Warner, Hana K. ; Faist, Jérôme ; Lončar, Marko ; Benea-Chelmus, Ileana-Cristina</creator><creatorcontrib>Herter, Alexa ; Shams-Ansari, Amirhassan ; Settembrini, Francesca Fabiana ; Warner, Hana K. ; Faist, Jérôme ; Lončar, Marko ; Benea-Chelmus, Ileana-Cristina</creatorcontrib><description>Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m −1 with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ. Miniaturized platforms are desirable for terahertz applications. Here the authors demonstrate chip-scale THz generation with controllable waveforms using thin-film lithium niobate.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-35517-6</identifier><identifier>PMID: 36599838</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/400/385 ; 639/624/400/561 ; 639/766/400/385 ; 639/766/400/561 ; Amplitudes ; Broadband ; Controllability ; Crystals ; Far fields ; Femtosecond pulses ; Humanities and Social Sciences ; Lithium ; Lithium niobates ; multidisciplinary ; Object recognition ; Phase matching ; Science ; Science (multidisciplinary) ; Spectral emittance ; Synthesis ; Thin films ; Waveforms</subject><ispartof>Nature communications, 2023-01, Vol.14 (1), p.11-9, Article 11</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83</citedby><cites>FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83</cites><orcidid>0000-0002-5029-5017 ; 0000-0002-4814-4498 ; 0000-0002-2165-7832 ; 0000-0003-0370-8736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2760730601/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2760730601?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36599838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herter, Alexa</creatorcontrib><creatorcontrib>Shams-Ansari, Amirhassan</creatorcontrib><creatorcontrib>Settembrini, Francesca Fabiana</creatorcontrib><creatorcontrib>Warner, Hana K.</creatorcontrib><creatorcontrib>Faist, Jérôme</creatorcontrib><creatorcontrib>Lončar, Marko</creatorcontrib><creatorcontrib>Benea-Chelmus, Ileana-Cristina</creatorcontrib><title>Terahertz waveform synthesis in integrated thin-film lithium niobate platform</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m −1 with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ. Miniaturized platforms are desirable for terahertz applications. Here the authors demonstrate chip-scale THz generation with controllable waveforms using thin-film lithium niobate.</description><subject>639/624/1075/1079</subject><subject>639/624/400/385</subject><subject>639/624/400/561</subject><subject>639/766/400/385</subject><subject>639/766/400/561</subject><subject>Amplitudes</subject><subject>Broadband</subject><subject>Controllability</subject><subject>Crystals</subject><subject>Far fields</subject><subject>Femtosecond pulses</subject><subject>Humanities and Social Sciences</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>multidisciplinary</subject><subject>Object recognition</subject><subject>Phase matching</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectral emittance</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Waveforms</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CAInHhEvC3nQsSqmipVMSlnC3Hnux6lcSL7RSVX4-3KaXlgGXJI887z4z9IvSa4PcEM_0hc8KlajGlLROCqFY-Q8cUc9ISRdnzR_EROs15h-tiHdGcv0RHTIqu00wfo6_XkOwWUvnV_LQ3MMQ0Nfl2LlvIITdhrrvAJtkCvinbMLdDGKdmDDVepmYOsa-pZj_acih9hV4Mdsxwen-eoO_nn6_PvrRX3y4uzz5dtU5wXFonnfCk4z2A5VoD01pw2QvGhOu56AbKgXpBwXbEE28B6971jgxM9YqBZifocuX6aHdmn8Jk062JNpi7i5g2xqYS3AhGVkSHvbLOSz4wajnuK7r2kqBAssr6uLL2Sz-BdzCXZMcn0KeZOWzNJt6YThPaKVUB7-4BKf5YIBczhexgHO0MccmGKkmIplgder39R7qLS5rrVx1UVYElJlVFV5VLMecEw8MwBJuD-WY131TzzZ35RtaiN4-f8VDyx-oqYKsg19S8gfS393-wvwGoXLs8</recordid><startdate>20230104</startdate><enddate>20230104</enddate><creator>Herter, Alexa</creator><creator>Shams-Ansari, Amirhassan</creator><creator>Settembrini, Francesca Fabiana</creator><creator>Warner, Hana K.</creator><creator>Faist, Jérôme</creator><creator>Lončar, Marko</creator><creator>Benea-Chelmus, Ileana-Cristina</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5029-5017</orcidid><orcidid>https://orcid.org/0000-0002-4814-4498</orcidid><orcidid>https://orcid.org/0000-0002-2165-7832</orcidid><orcidid>https://orcid.org/0000-0003-0370-8736</orcidid></search><sort><creationdate>20230104</creationdate><title>Terahertz waveform synthesis in integrated thin-film lithium niobate platform</title><author>Herter, Alexa ; Shams-Ansari, Amirhassan ; Settembrini, Francesca Fabiana ; Warner, Hana K. ; Faist, Jérôme ; Lončar, Marko ; Benea-Chelmus, Ileana-Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1075/1079</topic><topic>639/624/400/385</topic><topic>639/624/400/561</topic><topic>639/766/400/385</topic><topic>639/766/400/561</topic><topic>Amplitudes</topic><topic>Broadband</topic><topic>Controllability</topic><topic>Crystals</topic><topic>Far fields</topic><topic>Femtosecond pulses</topic><topic>Humanities and Social Sciences</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>multidisciplinary</topic><topic>Object recognition</topic><topic>Phase matching</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectral emittance</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herter, Alexa</creatorcontrib><creatorcontrib>Shams-Ansari, Amirhassan</creatorcontrib><creatorcontrib>Settembrini, Francesca Fabiana</creatorcontrib><creatorcontrib>Warner, Hana K.</creatorcontrib><creatorcontrib>Faist, Jérôme</creatorcontrib><creatorcontrib>Lončar, Marko</creatorcontrib><creatorcontrib>Benea-Chelmus, Ileana-Cristina</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herter, Alexa</au><au>Shams-Ansari, Amirhassan</au><au>Settembrini, Francesca Fabiana</au><au>Warner, Hana K.</au><au>Faist, Jérôme</au><au>Lončar, Marko</au><au>Benea-Chelmus, Ileana-Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz waveform synthesis in integrated thin-film lithium niobate platform</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-01-04</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>11</spage><epage>9</epage><pages>11-9</pages><artnum>11</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m −1 with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ. Miniaturized platforms are desirable for terahertz applications. Here the authors demonstrate chip-scale THz generation with controllable waveforms using thin-film lithium niobate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36599838</pmid><doi>10.1038/s41467-022-35517-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5029-5017</orcidid><orcidid>https://orcid.org/0000-0002-4814-4498</orcidid><orcidid>https://orcid.org/0000-0002-2165-7832</orcidid><orcidid>https://orcid.org/0000-0003-0370-8736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-01, Vol.14 (1), p.11-9, Article 11
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_691d90d7acd64f32a40bd525336e7e63
source Publicly Available Content Database; PubMed Central(OpenAccess); Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1075/1079
639/624/400/385
639/624/400/561
639/766/400/385
639/766/400/561
Amplitudes
Broadband
Controllability
Crystals
Far fields
Femtosecond pulses
Humanities and Social Sciences
Lithium
Lithium niobates
multidisciplinary
Object recognition
Phase matching
Science
Science (multidisciplinary)
Spectral emittance
Synthesis
Thin films
Waveforms
title Terahertz waveform synthesis in integrated thin-film lithium niobate platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20waveform%20synthesis%20in%20integrated%20thin-film%20lithium%20niobate%20platform&rft.jtitle=Nature%20communications&rft.au=Herter,%20Alexa&rft.date=2023-01-04&rft.volume=14&rft.issue=1&rft.spage=11&rft.epage=9&rft.pages=11-9&rft.artnum=11&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-35517-6&rft_dat=%3Cproquest_doaj_%3E2761182073%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760730601&rft_id=info:pmid/36599838&rfr_iscdi=true