Loading…
Terahertz waveform synthesis in integrated thin-film lithium niobate platform
Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applica...
Saved in:
Published in: | Nature communications 2023-01, Vol.14 (1), p.11-9, Article 11 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 11 |
container_title | Nature communications |
container_volume | 14 |
creator | Herter, Alexa Shams-Ansari, Amirhassan Settembrini, Francesca Fabiana Warner, Hana K. Faist, Jérôme Lončar, Marko Benea-Chelmus, Ileana-Cristina |
description | Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m
−1
with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.
Miniaturized platforms are desirable for terahertz applications. Here the authors demonstrate chip-scale THz generation with controllable waveforms using thin-film lithium niobate. |
doi_str_mv | 10.1038/s41467-022-35517-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_691d90d7acd64f32a40bd525336e7e63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_691d90d7acd64f32a40bd525336e7e63</doaj_id><sourcerecordid>2761182073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAInHhEvC3nQsSqmipVMSlnC3Hnux6lcSL7RSVX4-3KaXlgGXJI887z4z9IvSa4PcEM_0hc8KlajGlLROCqFY-Q8cUc9ISRdnzR_EROs15h-tiHdGcv0RHTIqu00wfo6_XkOwWUvnV_LQ3MMQ0Nfl2LlvIITdhrrvAJtkCvinbMLdDGKdmDDVepmYOsa-pZj_acih9hV4Mdsxwen-eoO_nn6_PvrRX3y4uzz5dtU5wXFonnfCk4z2A5VoD01pw2QvGhOu56AbKgXpBwXbEE28B6971jgxM9YqBZifocuX6aHdmn8Jk062JNpi7i5g2xqYS3AhGVkSHvbLOSz4wajnuK7r2kqBAssr6uLL2Sz-BdzCXZMcn0KeZOWzNJt6YThPaKVUB7-4BKf5YIBczhexgHO0MccmGKkmIplgder39R7qLS5rrVx1UVYElJlVFV5VLMecEw8MwBJuD-WY131TzzZ35RtaiN4-f8VDyx-oqYKsg19S8gfS393-wvwGoXLs8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760730601</pqid></control><display><type>article</type><title>Terahertz waveform synthesis in integrated thin-film lithium niobate platform</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Herter, Alexa ; Shams-Ansari, Amirhassan ; Settembrini, Francesca Fabiana ; Warner, Hana K. ; Faist, Jérôme ; Lončar, Marko ; Benea-Chelmus, Ileana-Cristina</creator><creatorcontrib>Herter, Alexa ; Shams-Ansari, Amirhassan ; Settembrini, Francesca Fabiana ; Warner, Hana K. ; Faist, Jérôme ; Lončar, Marko ; Benea-Chelmus, Ileana-Cristina</creatorcontrib><description>Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m
−1
with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.
Miniaturized platforms are desirable for terahertz applications. Here the authors demonstrate chip-scale THz generation with controllable waveforms using thin-film lithium niobate.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-35517-6</identifier><identifier>PMID: 36599838</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/400/385 ; 639/624/400/561 ; 639/766/400/385 ; 639/766/400/561 ; Amplitudes ; Broadband ; Controllability ; Crystals ; Far fields ; Femtosecond pulses ; Humanities and Social Sciences ; Lithium ; Lithium niobates ; multidisciplinary ; Object recognition ; Phase matching ; Science ; Science (multidisciplinary) ; Spectral emittance ; Synthesis ; Thin films ; Waveforms</subject><ispartof>Nature communications, 2023-01, Vol.14 (1), p.11-9, Article 11</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83</citedby><cites>FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83</cites><orcidid>0000-0002-5029-5017 ; 0000-0002-4814-4498 ; 0000-0002-2165-7832 ; 0000-0003-0370-8736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2760730601/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2760730601?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36599838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herter, Alexa</creatorcontrib><creatorcontrib>Shams-Ansari, Amirhassan</creatorcontrib><creatorcontrib>Settembrini, Francesca Fabiana</creatorcontrib><creatorcontrib>Warner, Hana K.</creatorcontrib><creatorcontrib>Faist, Jérôme</creatorcontrib><creatorcontrib>Lončar, Marko</creatorcontrib><creatorcontrib>Benea-Chelmus, Ileana-Cristina</creatorcontrib><title>Terahertz waveform synthesis in integrated thin-film lithium niobate platform</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m
−1
with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.
Miniaturized platforms are desirable for terahertz applications. Here the authors demonstrate chip-scale THz generation with controllable waveforms using thin-film lithium niobate.</description><subject>639/624/1075/1079</subject><subject>639/624/400/385</subject><subject>639/624/400/561</subject><subject>639/766/400/385</subject><subject>639/766/400/561</subject><subject>Amplitudes</subject><subject>Broadband</subject><subject>Controllability</subject><subject>Crystals</subject><subject>Far fields</subject><subject>Femtosecond pulses</subject><subject>Humanities and Social Sciences</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>multidisciplinary</subject><subject>Object recognition</subject><subject>Phase matching</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectral emittance</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Waveforms</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CAInHhEvC3nQsSqmipVMSlnC3Hnux6lcSL7RSVX4-3KaXlgGXJI887z4z9IvSa4PcEM_0hc8KlajGlLROCqFY-Q8cUc9ISRdnzR_EROs15h-tiHdGcv0RHTIqu00wfo6_XkOwWUvnV_LQ3MMQ0Nfl2LlvIITdhrrvAJtkCvinbMLdDGKdmDDVepmYOsa-pZj_acih9hV4Mdsxwen-eoO_nn6_PvrRX3y4uzz5dtU5wXFonnfCk4z2A5VoD01pw2QvGhOu56AbKgXpBwXbEE28B6971jgxM9YqBZifocuX6aHdmn8Jk062JNpi7i5g2xqYS3AhGVkSHvbLOSz4wajnuK7r2kqBAssr6uLL2Sz-BdzCXZMcn0KeZOWzNJt6YThPaKVUB7-4BKf5YIBczhexgHO0MccmGKkmIplgder39R7qLS5rrVx1UVYElJlVFV5VLMecEw8MwBJuD-WY131TzzZ35RtaiN4-f8VDyx-oqYKsg19S8gfS393-wvwGoXLs8</recordid><startdate>20230104</startdate><enddate>20230104</enddate><creator>Herter, Alexa</creator><creator>Shams-Ansari, Amirhassan</creator><creator>Settembrini, Francesca Fabiana</creator><creator>Warner, Hana K.</creator><creator>Faist, Jérôme</creator><creator>Lončar, Marko</creator><creator>Benea-Chelmus, Ileana-Cristina</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5029-5017</orcidid><orcidid>https://orcid.org/0000-0002-4814-4498</orcidid><orcidid>https://orcid.org/0000-0002-2165-7832</orcidid><orcidid>https://orcid.org/0000-0003-0370-8736</orcidid></search><sort><creationdate>20230104</creationdate><title>Terahertz waveform synthesis in integrated thin-film lithium niobate platform</title><author>Herter, Alexa ; Shams-Ansari, Amirhassan ; Settembrini, Francesca Fabiana ; Warner, Hana K. ; Faist, Jérôme ; Lončar, Marko ; Benea-Chelmus, Ileana-Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1075/1079</topic><topic>639/624/400/385</topic><topic>639/624/400/561</topic><topic>639/766/400/385</topic><topic>639/766/400/561</topic><topic>Amplitudes</topic><topic>Broadband</topic><topic>Controllability</topic><topic>Crystals</topic><topic>Far fields</topic><topic>Femtosecond pulses</topic><topic>Humanities and Social Sciences</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>multidisciplinary</topic><topic>Object recognition</topic><topic>Phase matching</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectral emittance</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herter, Alexa</creatorcontrib><creatorcontrib>Shams-Ansari, Amirhassan</creatorcontrib><creatorcontrib>Settembrini, Francesca Fabiana</creatorcontrib><creatorcontrib>Warner, Hana K.</creatorcontrib><creatorcontrib>Faist, Jérôme</creatorcontrib><creatorcontrib>Lončar, Marko</creatorcontrib><creatorcontrib>Benea-Chelmus, Ileana-Cristina</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herter, Alexa</au><au>Shams-Ansari, Amirhassan</au><au>Settembrini, Francesca Fabiana</au><au>Warner, Hana K.</au><au>Faist, Jérôme</au><au>Lončar, Marko</au><au>Benea-Chelmus, Ileana-Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz waveform synthesis in integrated thin-film lithium niobate platform</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-01-04</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>11</spage><epage>9</epage><pages>11-9</pages><artnum>11</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Bridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m
−1
with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.
Miniaturized platforms are desirable for terahertz applications. Here the authors demonstrate chip-scale THz generation with controllable waveforms using thin-film lithium niobate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36599838</pmid><doi>10.1038/s41467-022-35517-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5029-5017</orcidid><orcidid>https://orcid.org/0000-0002-4814-4498</orcidid><orcidid>https://orcid.org/0000-0002-2165-7832</orcidid><orcidid>https://orcid.org/0000-0003-0370-8736</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-01, Vol.14 (1), p.11-9, Article 11 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_691d90d7acd64f32a40bd525336e7e63 |
source | Publicly Available Content Database; PubMed Central(OpenAccess); Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1075/1079 639/624/400/385 639/624/400/561 639/766/400/385 639/766/400/561 Amplitudes Broadband Controllability Crystals Far fields Femtosecond pulses Humanities and Social Sciences Lithium Lithium niobates multidisciplinary Object recognition Phase matching Science Science (multidisciplinary) Spectral emittance Synthesis Thin films Waveforms |
title | Terahertz waveform synthesis in integrated thin-film lithium niobate platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20waveform%20synthesis%20in%20integrated%20thin-film%20lithium%20niobate%20platform&rft.jtitle=Nature%20communications&rft.au=Herter,%20Alexa&rft.date=2023-01-04&rft.volume=14&rft.issue=1&rft.spage=11&rft.epage=9&rft.pages=11-9&rft.artnum=11&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-35517-6&rft_dat=%3Cproquest_doaj_%3E2761182073%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-c6c5d194beea488e388546b5335cb459f24e2d52ea91d1dae08bcbc1f37b73e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760730601&rft_id=info:pmid/36599838&rfr_iscdi=true |