Loading…

TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response

The TAGAP gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-04, Vol.11 (1), p.1913-1913, Article 1913
Main Authors: Chen, Jianwen, He, Ruirui, Sun, Wanwei, Gao, Ru, Peng, Qianwen, Zhu, Liwen, Du, Yanyun, Ma, Xiaojian, Guo, Xiaoli, Zhang, Huazhi, Tan, Chengcheng, Wang, Junhan, Zhang, Wei, Weng, Xiufang, Man, Jianghong, Bauer, Hermann, Wang, Qing K., Martin, Bradley N., Zhang, Cun-Jin, Li, Xiaoxia, Wang, Chenhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3
cites cdi_FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3
container_end_page 1913
container_issue 1
container_start_page 1913
container_title Nature communications
container_volume 11
creator Chen, Jianwen
He, Ruirui
Sun, Wanwei
Gao, Ru
Peng, Qianwen
Zhu, Liwen
Du, Yanyun
Ma, Xiaojian
Guo, Xiaoli
Zhang, Huazhi
Tan, Chengcheng
Wang, Junhan
Zhang, Wei
Weng, Xiufang
Man, Jianghong
Bauer, Hermann
Wang, Qing K.
Martin, Bradley N.
Zhang, Cun-Jin
Li, Xiaoxia
Wang, Chenhui
description The TAGAP gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During Candida albicans infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity. TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.
doi_str_mv 10.1038/s41467-020-15564-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_69258493889b41e28feb66c907a43116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_69258493889b41e28feb66c907a43116</doaj_id><sourcerecordid>2392416746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3</originalsourceid><addsrcrecordid>eNp9ks1u3CAURq2qVROleYEuKqRuunHLBczPptI0TZNIkZrFdI0wxg4jD0zBjpS3DzNO06SLsjCIe-4Bo6-q3gP-DJjKL5kB46LGBNfQNJzV4lV1TDCDGgShr5-tj6rTnDe4DKpAMva2OqKEAlFSHVd5vbpY3SAf8pRmO2W0vgWBOt_3LrkweTP5GFB7j9rku8GHAX13dvIBmfK9W6pTROc3l98Iyn4IZtxDBfAhmMkhUyT9HAYzouTyLobs3lVvejNmd_o4n1S_fpyvzy7r658XV2er69o2DE81N6xtbIcFtU7ZljsipAPcgMACGFGt6npBewArJVhuOelN17WKSWaJ6iw9qa4WbxfNRu-S35p0r6Px-rAR06BNmrwdneaKNJIpKqVqGTgie9dybhUWhlEAXlxfF9dubreus-VtkhlfSF9Wgr_VQ7zTAkTphyL49ChI8ffs8qS3Pls3jia4OGdNqKKYCi5pQT_-g27inMrLHijCgAu2vxFZKJtizsn1T5cBrPcR0UtEdImIPkREi9L04flvPLX8CUQB6ALkUgqDS3_P_o_2AZXexmo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392416746</pqid></control><display><type>article</type><title>TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Jianwen ; He, Ruirui ; Sun, Wanwei ; Gao, Ru ; Peng, Qianwen ; Zhu, Liwen ; Du, Yanyun ; Ma, Xiaojian ; Guo, Xiaoli ; Zhang, Huazhi ; Tan, Chengcheng ; Wang, Junhan ; Zhang, Wei ; Weng, Xiufang ; Man, Jianghong ; Bauer, Hermann ; Wang, Qing K. ; Martin, Bradley N. ; Zhang, Cun-Jin ; Li, Xiaoxia ; Wang, Chenhui</creator><creatorcontrib>Chen, Jianwen ; He, Ruirui ; Sun, Wanwei ; Gao, Ru ; Peng, Qianwen ; Zhu, Liwen ; Du, Yanyun ; Ma, Xiaojian ; Guo, Xiaoli ; Zhang, Huazhi ; Tan, Chengcheng ; Wang, Junhan ; Zhang, Wei ; Weng, Xiufang ; Man, Jianghong ; Bauer, Hermann ; Wang, Qing K. ; Martin, Bradley N. ; Zhang, Cun-Jin ; Li, Xiaoxia ; Wang, Chenhui</creatorcontrib><description>The TAGAP gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During Candida albicans infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity. TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15564-7</identifier><identifier>PMID: 32312989</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/95 ; 14/19 ; 38/61 ; 631/250/249/1313/1666 ; 631/250/2499 ; 631/250/255/1672 ; 631/250/262/2106 ; 631/250/516 ; 64/60 ; 82/58 ; 82/80 ; 96/95 ; Animal models ; Animals ; Antifungal agents ; Antifungal Agents - immunology ; Antifungal Agents - pharmacology ; Autoimmune diseases ; Candidemia ; Candidiasis - immunology ; CARD Signaling Adaptor Proteins - metabolism ; Cell Differentiation ; Cytokines ; Cytokines - metabolism ; Differentiation (biology) ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental - immunology ; Encephalomyelitis, Autoimmune, Experimental - microbiology ; Experimental allergic encephalomyelitis ; Female ; Fungi ; Fungicides ; GTPase-Activating Proteins - chemistry ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Helper cells ; Humanities and Social Sciences ; Humans ; Immune response (cell-mediated) ; Infectious diseases ; Inflammation ; Lectins, C-Type - metabolism ; Lymphocytes ; Lymphocytes T ; Male ; Mice, Knockout ; multidisciplinary ; Multiple sclerosis ; Multiple Sclerosis - complications ; Multiple Sclerosis - immunology ; Myeloid cells ; Phosphorylation ; Receptor, EphB2 - immunology ; Receptor, EphB2 - metabolism ; Receptors, Immunologic ; Receptors, Pattern Recognition - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction - drug effects ; Signaling ; Th17 Cells - immunology ; Th17 Cells - metabolism ; Tyrosine</subject><ispartof>Nature communications, 2020-04, Vol.11 (1), p.1913-1913, Article 1913</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3</citedby><cites>FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3</cites><orcidid>0000-0002-8902-8805 ; 0000-0002-4872-9525 ; 0000-0001-7996-7246 ; 0000-0002-3186-3066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2392416746/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2392416746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32312989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>He, Ruirui</creatorcontrib><creatorcontrib>Sun, Wanwei</creatorcontrib><creatorcontrib>Gao, Ru</creatorcontrib><creatorcontrib>Peng, Qianwen</creatorcontrib><creatorcontrib>Zhu, Liwen</creatorcontrib><creatorcontrib>Du, Yanyun</creatorcontrib><creatorcontrib>Ma, Xiaojian</creatorcontrib><creatorcontrib>Guo, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Huazhi</creatorcontrib><creatorcontrib>Tan, Chengcheng</creatorcontrib><creatorcontrib>Wang, Junhan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Weng, Xiufang</creatorcontrib><creatorcontrib>Man, Jianghong</creatorcontrib><creatorcontrib>Bauer, Hermann</creatorcontrib><creatorcontrib>Wang, Qing K.</creatorcontrib><creatorcontrib>Martin, Bradley N.</creatorcontrib><creatorcontrib>Zhang, Cun-Jin</creatorcontrib><creatorcontrib>Li, Xiaoxia</creatorcontrib><creatorcontrib>Wang, Chenhui</creatorcontrib><title>TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The TAGAP gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During Candida albicans infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity. TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.</description><subject>13/1</subject><subject>13/95</subject><subject>14/19</subject><subject>38/61</subject><subject>631/250/249/1313/1666</subject><subject>631/250/2499</subject><subject>631/250/255/1672</subject><subject>631/250/262/2106</subject><subject>631/250/516</subject><subject>64/60</subject><subject>82/58</subject><subject>82/80</subject><subject>96/95</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antifungal agents</subject><subject>Antifungal Agents - immunology</subject><subject>Antifungal Agents - pharmacology</subject><subject>Autoimmune diseases</subject><subject>Candidemia</subject><subject>Candidiasis - immunology</subject><subject>CARD Signaling Adaptor Proteins - metabolism</subject><subject>Cell Differentiation</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Differentiation (biology)</subject><subject>Disease Models, Animal</subject><subject>Encephalomyelitis, Autoimmune, Experimental - immunology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - microbiology</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Female</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>GTPase-Activating Proteins - chemistry</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Helper cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune response (cell-mediated)</subject><subject>Infectious diseases</subject><subject>Inflammation</subject><subject>Lectins, C-Type - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - complications</subject><subject>Multiple Sclerosis - immunology</subject><subject>Myeloid cells</subject><subject>Phosphorylation</subject><subject>Receptor, EphB2 - immunology</subject><subject>Receptor, EphB2 - metabolism</subject><subject>Receptors, Immunologic</subject><subject>Receptors, Pattern Recognition - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Th17 Cells - immunology</subject><subject>Th17 Cells - metabolism</subject><subject>Tyrosine</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u3CAURq2qVROleYEuKqRuunHLBczPptI0TZNIkZrFdI0wxg4jD0zBjpS3DzNO06SLsjCIe-4Bo6-q3gP-DJjKL5kB46LGBNfQNJzV4lV1TDCDGgShr5-tj6rTnDe4DKpAMva2OqKEAlFSHVd5vbpY3SAf8pRmO2W0vgWBOt_3LrkweTP5GFB7j9rku8GHAX13dvIBmfK9W6pTROc3l98Iyn4IZtxDBfAhmMkhUyT9HAYzouTyLobs3lVvejNmd_o4n1S_fpyvzy7r658XV2er69o2DE81N6xtbIcFtU7ZljsipAPcgMACGFGt6npBewArJVhuOelN17WKSWaJ6iw9qa4WbxfNRu-S35p0r6Px-rAR06BNmrwdneaKNJIpKqVqGTgie9dybhUWhlEAXlxfF9dubreus-VtkhlfSF9Wgr_VQ7zTAkTphyL49ChI8ffs8qS3Pls3jia4OGdNqKKYCi5pQT_-g27inMrLHijCgAu2vxFZKJtizsn1T5cBrPcR0UtEdImIPkREi9L04flvPLX8CUQB6ALkUgqDS3_P_o_2AZXexmo</recordid><startdate>20200420</startdate><enddate>20200420</enddate><creator>Chen, Jianwen</creator><creator>He, Ruirui</creator><creator>Sun, Wanwei</creator><creator>Gao, Ru</creator><creator>Peng, Qianwen</creator><creator>Zhu, Liwen</creator><creator>Du, Yanyun</creator><creator>Ma, Xiaojian</creator><creator>Guo, Xiaoli</creator><creator>Zhang, Huazhi</creator><creator>Tan, Chengcheng</creator><creator>Wang, Junhan</creator><creator>Zhang, Wei</creator><creator>Weng, Xiufang</creator><creator>Man, Jianghong</creator><creator>Bauer, Hermann</creator><creator>Wang, Qing K.</creator><creator>Martin, Bradley N.</creator><creator>Zhang, Cun-Jin</creator><creator>Li, Xiaoxia</creator><creator>Wang, Chenhui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8902-8805</orcidid><orcidid>https://orcid.org/0000-0002-4872-9525</orcidid><orcidid>https://orcid.org/0000-0001-7996-7246</orcidid><orcidid>https://orcid.org/0000-0002-3186-3066</orcidid></search><sort><creationdate>20200420</creationdate><title>TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response</title><author>Chen, Jianwen ; He, Ruirui ; Sun, Wanwei ; Gao, Ru ; Peng, Qianwen ; Zhu, Liwen ; Du, Yanyun ; Ma, Xiaojian ; Guo, Xiaoli ; Zhang, Huazhi ; Tan, Chengcheng ; Wang, Junhan ; Zhang, Wei ; Weng, Xiufang ; Man, Jianghong ; Bauer, Hermann ; Wang, Qing K. ; Martin, Bradley N. ; Zhang, Cun-Jin ; Li, Xiaoxia ; Wang, Chenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/95</topic><topic>14/19</topic><topic>38/61</topic><topic>631/250/249/1313/1666</topic><topic>631/250/2499</topic><topic>631/250/255/1672</topic><topic>631/250/262/2106</topic><topic>631/250/516</topic><topic>64/60</topic><topic>82/58</topic><topic>82/80</topic><topic>96/95</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antifungal agents</topic><topic>Antifungal Agents - immunology</topic><topic>Antifungal Agents - pharmacology</topic><topic>Autoimmune diseases</topic><topic>Candidemia</topic><topic>Candidiasis - immunology</topic><topic>CARD Signaling Adaptor Proteins - metabolism</topic><topic>Cell Differentiation</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Differentiation (biology)</topic><topic>Disease Models, Animal</topic><topic>Encephalomyelitis, Autoimmune, Experimental - immunology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - microbiology</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Female</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>GTPase-Activating Proteins - chemistry</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Helper cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune response (cell-mediated)</topic><topic>Infectious diseases</topic><topic>Inflammation</topic><topic>Lectins, C-Type - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - complications</topic><topic>Multiple Sclerosis - immunology</topic><topic>Myeloid cells</topic><topic>Phosphorylation</topic><topic>Receptor, EphB2 - immunology</topic><topic>Receptor, EphB2 - metabolism</topic><topic>Receptors, Immunologic</topic><topic>Receptors, Pattern Recognition - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Th17 Cells - immunology</topic><topic>Th17 Cells - metabolism</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>He, Ruirui</creatorcontrib><creatorcontrib>Sun, Wanwei</creatorcontrib><creatorcontrib>Gao, Ru</creatorcontrib><creatorcontrib>Peng, Qianwen</creatorcontrib><creatorcontrib>Zhu, Liwen</creatorcontrib><creatorcontrib>Du, Yanyun</creatorcontrib><creatorcontrib>Ma, Xiaojian</creatorcontrib><creatorcontrib>Guo, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Huazhi</creatorcontrib><creatorcontrib>Tan, Chengcheng</creatorcontrib><creatorcontrib>Wang, Junhan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Weng, Xiufang</creatorcontrib><creatorcontrib>Man, Jianghong</creatorcontrib><creatorcontrib>Bauer, Hermann</creatorcontrib><creatorcontrib>Wang, Qing K.</creatorcontrib><creatorcontrib>Martin, Bradley N.</creatorcontrib><creatorcontrib>Zhang, Cun-Jin</creatorcontrib><creatorcontrib>Li, Xiaoxia</creatorcontrib><creatorcontrib>Wang, Chenhui</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianwen</au><au>He, Ruirui</au><au>Sun, Wanwei</au><au>Gao, Ru</au><au>Peng, Qianwen</au><au>Zhu, Liwen</au><au>Du, Yanyun</au><au>Ma, Xiaojian</au><au>Guo, Xiaoli</au><au>Zhang, Huazhi</au><au>Tan, Chengcheng</au><au>Wang, Junhan</au><au>Zhang, Wei</au><au>Weng, Xiufang</au><au>Man, Jianghong</au><au>Bauer, Hermann</au><au>Wang, Qing K.</au><au>Martin, Bradley N.</au><au>Zhang, Cun-Jin</au><au>Li, Xiaoxia</au><au>Wang, Chenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-04-20</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1913</spage><epage>1913</epage><pages>1913-1913</pages><artnum>1913</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The TAGAP gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During Candida albicans infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity. TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32312989</pmid><doi>10.1038/s41467-020-15564-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8902-8805</orcidid><orcidid>https://orcid.org/0000-0002-4872-9525</orcidid><orcidid>https://orcid.org/0000-0001-7996-7246</orcidid><orcidid>https://orcid.org/0000-0002-3186-3066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-04, Vol.11 (1), p.1913-1913, Article 1913
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_69258493889b41e28feb66c907a43116
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/95
14/19
38/61
631/250/249/1313/1666
631/250/2499
631/250/255/1672
631/250/262/2106
631/250/516
64/60
82/58
82/80
96/95
Animal models
Animals
Antifungal agents
Antifungal Agents - immunology
Antifungal Agents - pharmacology
Autoimmune diseases
Candidemia
Candidiasis - immunology
CARD Signaling Adaptor Proteins - metabolism
Cell Differentiation
Cytokines
Cytokines - metabolism
Differentiation (biology)
Disease Models, Animal
Encephalomyelitis, Autoimmune, Experimental - immunology
Encephalomyelitis, Autoimmune, Experimental - microbiology
Experimental allergic encephalomyelitis
Female
Fungi
Fungicides
GTPase-Activating Proteins - chemistry
GTPase-Activating Proteins - genetics
GTPase-Activating Proteins - metabolism
Helper cells
Humanities and Social Sciences
Humans
Immune response (cell-mediated)
Infectious diseases
Inflammation
Lectins, C-Type - metabolism
Lymphocytes
Lymphocytes T
Male
Mice, Knockout
multidisciplinary
Multiple sclerosis
Multiple Sclerosis - complications
Multiple Sclerosis - immunology
Myeloid cells
Phosphorylation
Receptor, EphB2 - immunology
Receptor, EphB2 - metabolism
Receptors, Immunologic
Receptors, Pattern Recognition - metabolism
Science
Science (multidisciplinary)
Signal Transduction - drug effects
Signaling
Th17 Cells - immunology
Th17 Cells - metabolism
Tyrosine
title TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAGAP%20instructs%20Th17%20differentiation%20by%20bridging%20Dectin%20activation%20to%20EPHB2%20signaling%20in%20innate%20antifungal%20response&rft.jtitle=Nature%20communications&rft.au=Chen,%20Jianwen&rft.date=2020-04-20&rft.volume=11&rft.issue=1&rft.spage=1913&rft.epage=1913&rft.pages=1913-1913&rft.artnum=1913&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15564-7&rft_dat=%3Cproquest_doaj_%3E2392416746%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2392416746&rft_id=info:pmid/32312989&rfr_iscdi=true