Loading…
TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response
The TAGAP gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required...
Saved in:
Published in: | Nature communications 2020-04, Vol.11 (1), p.1913-1913, Article 1913 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3 |
container_end_page | 1913 |
container_issue | 1 |
container_start_page | 1913 |
container_title | Nature communications |
container_volume | 11 |
creator | Chen, Jianwen He, Ruirui Sun, Wanwei Gao, Ru Peng, Qianwen Zhu, Liwen Du, Yanyun Ma, Xiaojian Guo, Xiaoli Zhang, Huazhi Tan, Chengcheng Wang, Junhan Zhang, Wei Weng, Xiufang Man, Jianghong Bauer, Hermann Wang, Qing K. Martin, Bradley N. Zhang, Cun-Jin Li, Xiaoxia Wang, Chenhui |
description | The
TAGAP
gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During
Candida albicans
infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity.
TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity. |
doi_str_mv | 10.1038/s41467-020-15564-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_69258493889b41e28feb66c907a43116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_69258493889b41e28feb66c907a43116</doaj_id><sourcerecordid>2392416746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3</originalsourceid><addsrcrecordid>eNp9ks1u3CAURq2qVROleYEuKqRuunHLBczPptI0TZNIkZrFdI0wxg4jD0zBjpS3DzNO06SLsjCIe-4Bo6-q3gP-DJjKL5kB46LGBNfQNJzV4lV1TDCDGgShr5-tj6rTnDe4DKpAMva2OqKEAlFSHVd5vbpY3SAf8pRmO2W0vgWBOt_3LrkweTP5GFB7j9rku8GHAX13dvIBmfK9W6pTROc3l98Iyn4IZtxDBfAhmMkhUyT9HAYzouTyLobs3lVvejNmd_o4n1S_fpyvzy7r658XV2er69o2DE81N6xtbIcFtU7ZljsipAPcgMACGFGt6npBewArJVhuOelN17WKSWaJ6iw9qa4WbxfNRu-S35p0r6Px-rAR06BNmrwdneaKNJIpKqVqGTgie9dybhUWhlEAXlxfF9dubreus-VtkhlfSF9Wgr_VQ7zTAkTphyL49ChI8ffs8qS3Pls3jia4OGdNqKKYCi5pQT_-g27inMrLHijCgAu2vxFZKJtizsn1T5cBrPcR0UtEdImIPkREi9L04flvPLX8CUQB6ALkUgqDS3_P_o_2AZXexmo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392416746</pqid></control><display><type>article</type><title>TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Jianwen ; He, Ruirui ; Sun, Wanwei ; Gao, Ru ; Peng, Qianwen ; Zhu, Liwen ; Du, Yanyun ; Ma, Xiaojian ; Guo, Xiaoli ; Zhang, Huazhi ; Tan, Chengcheng ; Wang, Junhan ; Zhang, Wei ; Weng, Xiufang ; Man, Jianghong ; Bauer, Hermann ; Wang, Qing K. ; Martin, Bradley N. ; Zhang, Cun-Jin ; Li, Xiaoxia ; Wang, Chenhui</creator><creatorcontrib>Chen, Jianwen ; He, Ruirui ; Sun, Wanwei ; Gao, Ru ; Peng, Qianwen ; Zhu, Liwen ; Du, Yanyun ; Ma, Xiaojian ; Guo, Xiaoli ; Zhang, Huazhi ; Tan, Chengcheng ; Wang, Junhan ; Zhang, Wei ; Weng, Xiufang ; Man, Jianghong ; Bauer, Hermann ; Wang, Qing K. ; Martin, Bradley N. ; Zhang, Cun-Jin ; Li, Xiaoxia ; Wang, Chenhui</creatorcontrib><description>The
TAGAP
gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During
Candida albicans
infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity.
TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15564-7</identifier><identifier>PMID: 32312989</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/95 ; 14/19 ; 38/61 ; 631/250/249/1313/1666 ; 631/250/2499 ; 631/250/255/1672 ; 631/250/262/2106 ; 631/250/516 ; 64/60 ; 82/58 ; 82/80 ; 96/95 ; Animal models ; Animals ; Antifungal agents ; Antifungal Agents - immunology ; Antifungal Agents - pharmacology ; Autoimmune diseases ; Candidemia ; Candidiasis - immunology ; CARD Signaling Adaptor Proteins - metabolism ; Cell Differentiation ; Cytokines ; Cytokines - metabolism ; Differentiation (biology) ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental - immunology ; Encephalomyelitis, Autoimmune, Experimental - microbiology ; Experimental allergic encephalomyelitis ; Female ; Fungi ; Fungicides ; GTPase-Activating Proteins - chemistry ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Helper cells ; Humanities and Social Sciences ; Humans ; Immune response (cell-mediated) ; Infectious diseases ; Inflammation ; Lectins, C-Type - metabolism ; Lymphocytes ; Lymphocytes T ; Male ; Mice, Knockout ; multidisciplinary ; Multiple sclerosis ; Multiple Sclerosis - complications ; Multiple Sclerosis - immunology ; Myeloid cells ; Phosphorylation ; Receptor, EphB2 - immunology ; Receptor, EphB2 - metabolism ; Receptors, Immunologic ; Receptors, Pattern Recognition - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction - drug effects ; Signaling ; Th17 Cells - immunology ; Th17 Cells - metabolism ; Tyrosine</subject><ispartof>Nature communications, 2020-04, Vol.11 (1), p.1913-1913, Article 1913</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3</citedby><cites>FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3</cites><orcidid>0000-0002-8902-8805 ; 0000-0002-4872-9525 ; 0000-0001-7996-7246 ; 0000-0002-3186-3066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2392416746/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2392416746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32312989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>He, Ruirui</creatorcontrib><creatorcontrib>Sun, Wanwei</creatorcontrib><creatorcontrib>Gao, Ru</creatorcontrib><creatorcontrib>Peng, Qianwen</creatorcontrib><creatorcontrib>Zhu, Liwen</creatorcontrib><creatorcontrib>Du, Yanyun</creatorcontrib><creatorcontrib>Ma, Xiaojian</creatorcontrib><creatorcontrib>Guo, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Huazhi</creatorcontrib><creatorcontrib>Tan, Chengcheng</creatorcontrib><creatorcontrib>Wang, Junhan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Weng, Xiufang</creatorcontrib><creatorcontrib>Man, Jianghong</creatorcontrib><creatorcontrib>Bauer, Hermann</creatorcontrib><creatorcontrib>Wang, Qing K.</creatorcontrib><creatorcontrib>Martin, Bradley N.</creatorcontrib><creatorcontrib>Zhang, Cun-Jin</creatorcontrib><creatorcontrib>Li, Xiaoxia</creatorcontrib><creatorcontrib>Wang, Chenhui</creatorcontrib><title>TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The
TAGAP
gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During
Candida albicans
infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity.
TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.</description><subject>13/1</subject><subject>13/95</subject><subject>14/19</subject><subject>38/61</subject><subject>631/250/249/1313/1666</subject><subject>631/250/2499</subject><subject>631/250/255/1672</subject><subject>631/250/262/2106</subject><subject>631/250/516</subject><subject>64/60</subject><subject>82/58</subject><subject>82/80</subject><subject>96/95</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antifungal agents</subject><subject>Antifungal Agents - immunology</subject><subject>Antifungal Agents - pharmacology</subject><subject>Autoimmune diseases</subject><subject>Candidemia</subject><subject>Candidiasis - immunology</subject><subject>CARD Signaling Adaptor Proteins - metabolism</subject><subject>Cell Differentiation</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Differentiation (biology)</subject><subject>Disease Models, Animal</subject><subject>Encephalomyelitis, Autoimmune, Experimental - immunology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - microbiology</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Female</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>GTPase-Activating Proteins - chemistry</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Helper cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune response (cell-mediated)</subject><subject>Infectious diseases</subject><subject>Inflammation</subject><subject>Lectins, C-Type - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - complications</subject><subject>Multiple Sclerosis - immunology</subject><subject>Myeloid cells</subject><subject>Phosphorylation</subject><subject>Receptor, EphB2 - immunology</subject><subject>Receptor, EphB2 - metabolism</subject><subject>Receptors, Immunologic</subject><subject>Receptors, Pattern Recognition - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Th17 Cells - immunology</subject><subject>Th17 Cells - metabolism</subject><subject>Tyrosine</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u3CAURq2qVROleYEuKqRuunHLBczPptI0TZNIkZrFdI0wxg4jD0zBjpS3DzNO06SLsjCIe-4Bo6-q3gP-DJjKL5kB46LGBNfQNJzV4lV1TDCDGgShr5-tj6rTnDe4DKpAMva2OqKEAlFSHVd5vbpY3SAf8pRmO2W0vgWBOt_3LrkweTP5GFB7j9rku8GHAX13dvIBmfK9W6pTROc3l98Iyn4IZtxDBfAhmMkhUyT9HAYzouTyLobs3lVvejNmd_o4n1S_fpyvzy7r658XV2er69o2DE81N6xtbIcFtU7ZljsipAPcgMACGFGt6npBewArJVhuOelN17WKSWaJ6iw9qa4WbxfNRu-S35p0r6Px-rAR06BNmrwdneaKNJIpKqVqGTgie9dybhUWhlEAXlxfF9dubreus-VtkhlfSF9Wgr_VQ7zTAkTphyL49ChI8ffs8qS3Pls3jia4OGdNqKKYCi5pQT_-g27inMrLHijCgAu2vxFZKJtizsn1T5cBrPcR0UtEdImIPkREi9L04flvPLX8CUQB6ALkUgqDS3_P_o_2AZXexmo</recordid><startdate>20200420</startdate><enddate>20200420</enddate><creator>Chen, Jianwen</creator><creator>He, Ruirui</creator><creator>Sun, Wanwei</creator><creator>Gao, Ru</creator><creator>Peng, Qianwen</creator><creator>Zhu, Liwen</creator><creator>Du, Yanyun</creator><creator>Ma, Xiaojian</creator><creator>Guo, Xiaoli</creator><creator>Zhang, Huazhi</creator><creator>Tan, Chengcheng</creator><creator>Wang, Junhan</creator><creator>Zhang, Wei</creator><creator>Weng, Xiufang</creator><creator>Man, Jianghong</creator><creator>Bauer, Hermann</creator><creator>Wang, Qing K.</creator><creator>Martin, Bradley N.</creator><creator>Zhang, Cun-Jin</creator><creator>Li, Xiaoxia</creator><creator>Wang, Chenhui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8902-8805</orcidid><orcidid>https://orcid.org/0000-0002-4872-9525</orcidid><orcidid>https://orcid.org/0000-0001-7996-7246</orcidid><orcidid>https://orcid.org/0000-0002-3186-3066</orcidid></search><sort><creationdate>20200420</creationdate><title>TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response</title><author>Chen, Jianwen ; He, Ruirui ; Sun, Wanwei ; Gao, Ru ; Peng, Qianwen ; Zhu, Liwen ; Du, Yanyun ; Ma, Xiaojian ; Guo, Xiaoli ; Zhang, Huazhi ; Tan, Chengcheng ; Wang, Junhan ; Zhang, Wei ; Weng, Xiufang ; Man, Jianghong ; Bauer, Hermann ; Wang, Qing K. ; Martin, Bradley N. ; Zhang, Cun-Jin ; Li, Xiaoxia ; Wang, Chenhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/95</topic><topic>14/19</topic><topic>38/61</topic><topic>631/250/249/1313/1666</topic><topic>631/250/2499</topic><topic>631/250/255/1672</topic><topic>631/250/262/2106</topic><topic>631/250/516</topic><topic>64/60</topic><topic>82/58</topic><topic>82/80</topic><topic>96/95</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antifungal agents</topic><topic>Antifungal Agents - immunology</topic><topic>Antifungal Agents - pharmacology</topic><topic>Autoimmune diseases</topic><topic>Candidemia</topic><topic>Candidiasis - immunology</topic><topic>CARD Signaling Adaptor Proteins - metabolism</topic><topic>Cell Differentiation</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Differentiation (biology)</topic><topic>Disease Models, Animal</topic><topic>Encephalomyelitis, Autoimmune, Experimental - immunology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - microbiology</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Female</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>GTPase-Activating Proteins - chemistry</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Helper cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune response (cell-mediated)</topic><topic>Infectious diseases</topic><topic>Inflammation</topic><topic>Lectins, C-Type - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - complications</topic><topic>Multiple Sclerosis - immunology</topic><topic>Myeloid cells</topic><topic>Phosphorylation</topic><topic>Receptor, EphB2 - immunology</topic><topic>Receptor, EphB2 - metabolism</topic><topic>Receptors, Immunologic</topic><topic>Receptors, Pattern Recognition - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Th17 Cells - immunology</topic><topic>Th17 Cells - metabolism</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>He, Ruirui</creatorcontrib><creatorcontrib>Sun, Wanwei</creatorcontrib><creatorcontrib>Gao, Ru</creatorcontrib><creatorcontrib>Peng, Qianwen</creatorcontrib><creatorcontrib>Zhu, Liwen</creatorcontrib><creatorcontrib>Du, Yanyun</creatorcontrib><creatorcontrib>Ma, Xiaojian</creatorcontrib><creatorcontrib>Guo, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Huazhi</creatorcontrib><creatorcontrib>Tan, Chengcheng</creatorcontrib><creatorcontrib>Wang, Junhan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Weng, Xiufang</creatorcontrib><creatorcontrib>Man, Jianghong</creatorcontrib><creatorcontrib>Bauer, Hermann</creatorcontrib><creatorcontrib>Wang, Qing K.</creatorcontrib><creatorcontrib>Martin, Bradley N.</creatorcontrib><creatorcontrib>Zhang, Cun-Jin</creatorcontrib><creatorcontrib>Li, Xiaoxia</creatorcontrib><creatorcontrib>Wang, Chenhui</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianwen</au><au>He, Ruirui</au><au>Sun, Wanwei</au><au>Gao, Ru</au><au>Peng, Qianwen</au><au>Zhu, Liwen</au><au>Du, Yanyun</au><au>Ma, Xiaojian</au><au>Guo, Xiaoli</au><au>Zhang, Huazhi</au><au>Tan, Chengcheng</au><au>Wang, Junhan</au><au>Zhang, Wei</au><au>Weng, Xiufang</au><au>Man, Jianghong</au><au>Bauer, Hermann</au><au>Wang, Qing K.</au><au>Martin, Bradley N.</au><au>Zhang, Cun-Jin</au><au>Li, Xiaoxia</au><au>Wang, Chenhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-04-20</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1913</spage><epage>1913</epage><pages>1913-1913</pages><artnum>1913</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The
TAGAP
gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During
Candida albicans
infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity.
TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32312989</pmid><doi>10.1038/s41467-020-15564-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8902-8805</orcidid><orcidid>https://orcid.org/0000-0002-4872-9525</orcidid><orcidid>https://orcid.org/0000-0001-7996-7246</orcidid><orcidid>https://orcid.org/0000-0002-3186-3066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-04, Vol.11 (1), p.1913-1913, Article 1913 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_69258493889b41e28feb66c907a43116 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/95 14/19 38/61 631/250/249/1313/1666 631/250/2499 631/250/255/1672 631/250/262/2106 631/250/516 64/60 82/58 82/80 96/95 Animal models Animals Antifungal agents Antifungal Agents - immunology Antifungal Agents - pharmacology Autoimmune diseases Candidemia Candidiasis - immunology CARD Signaling Adaptor Proteins - metabolism Cell Differentiation Cytokines Cytokines - metabolism Differentiation (biology) Disease Models, Animal Encephalomyelitis, Autoimmune, Experimental - immunology Encephalomyelitis, Autoimmune, Experimental - microbiology Experimental allergic encephalomyelitis Female Fungi Fungicides GTPase-Activating Proteins - chemistry GTPase-Activating Proteins - genetics GTPase-Activating Proteins - metabolism Helper cells Humanities and Social Sciences Humans Immune response (cell-mediated) Infectious diseases Inflammation Lectins, C-Type - metabolism Lymphocytes Lymphocytes T Male Mice, Knockout multidisciplinary Multiple sclerosis Multiple Sclerosis - complications Multiple Sclerosis - immunology Myeloid cells Phosphorylation Receptor, EphB2 - immunology Receptor, EphB2 - metabolism Receptors, Immunologic Receptors, Pattern Recognition - metabolism Science Science (multidisciplinary) Signal Transduction - drug effects Signaling Th17 Cells - immunology Th17 Cells - metabolism Tyrosine |
title | TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAGAP%20instructs%20Th17%20differentiation%20by%20bridging%20Dectin%20activation%20to%20EPHB2%20signaling%20in%20innate%20antifungal%20response&rft.jtitle=Nature%20communications&rft.au=Chen,%20Jianwen&rft.date=2020-04-20&rft.volume=11&rft.issue=1&rft.spage=1913&rft.epage=1913&rft.pages=1913-1913&rft.artnum=1913&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15564-7&rft_dat=%3Cproquest_doaj_%3E2392416746%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6a4b5cd073ce9cb6e278e10517071429b9df73f11c881c6c62faddb9484c29dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2392416746&rft_id=info:pmid/32312989&rfr_iscdi=true |