Loading…
Arabidopsis G-Protein β Subunit AGB1 Negatively Regulates DNA Binding of MYB62, a Suppressor in the Gibberellin Pathway
Plant G proteins are versatile components of transmembrane signaling transduction pathways. The deficient mutant of heterotrimeric G protein leads to defects in plant growth and development, suggesting that it regulates the GA pathway in Arabidopsis. However, the molecular mechanism of G protein reg...
Saved in:
Published in: | International journal of molecular sciences 2021-08, Vol.22 (15), p.8270 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plant G proteins are versatile components of transmembrane signaling transduction pathways. The deficient mutant of heterotrimeric G protein leads to defects in plant growth and development, suggesting that it regulates the GA pathway in Arabidopsis. However, the molecular mechanism of G protein regulation of the GA pathway is not understood in plants. In this study, two G protein β subunit (AGB1) mutants, agb1-2 and N692967, were dwarfed after exogenous application of GA3. AGB1 interacts with the DNA-binding domain MYB62, a GA pathway suppressor. Transgenic plants were obtained through overexpression of MYB62 in two backgrounds including the wild-type (MYB62/WT Col-0) and agb1 mutants (MYB62/agb1) in Arabidopsis. Genetic analysis showed that under GA3 treatment, the height of the transgenic plants MYB62/WT and MYB62/agb1 was lower than that of WT. The height of MYB62/agb1 plants was closer to MYB62/WT plants and higher than that of mutants agb1-2 and N692967, suggesting that MYB62 is downstream of AGB1 in the GA pathway. qRT-PCR and competitive DNA binding assays indicated that MYB62 can bind MYB elements in the promoter of GA2ox7, a GA degradation gene, to activate GA2ox7 transcription. AGB1 affected binding of MYB62 on the promoter of GA2ox7, thereby negatively regulating th eactivity of MYB62. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms22158270 |