Loading…

In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau

The intrinsically disordered protein, Tau, is abundant in neurons and contributes to the regulation of the microtubule (MT) and actin network, while its intracellular abnormal aggregation is closely associated with Alzheimer's disease. Here, using in-cell Nuclear Magnetic Resonance (NMR) spectr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2018-12, Vol.20 (1), p.90
Main Authors: Zhang, Shengnan, Wang, Chuchu, Lu, Jinxia, Ma, Xiaojuan, Liu, Zhenying, Li, Dan, Liu, Zhijun, Liu, Cong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-89e1e931017086670b14cd3aef3a257dbc00204d54ad8607cd4e529e073abe6f3
cites cdi_FETCH-LOGICAL-c478t-89e1e931017086670b14cd3aef3a257dbc00204d54ad8607cd4e529e073abe6f3
container_end_page
container_issue 1
container_start_page 90
container_title International journal of molecular sciences
container_volume 20
creator Zhang, Shengnan
Wang, Chuchu
Lu, Jinxia
Ma, Xiaojuan
Liu, Zhenying
Li, Dan
Liu, Zhijun
Liu, Cong
description The intrinsically disordered protein, Tau, is abundant in neurons and contributes to the regulation of the microtubule (MT) and actin network, while its intracellular abnormal aggregation is closely associated with Alzheimer's disease. Here, using in-cell Nuclear Magnetic Resonance (NMR) spectroscopy, we investigated the conformations of two different isoforms of Tau, Tau40 and k19, in mammalian cells. Combined with immunofluorescence imaging and western blot analyses, we found that the isotope-enriched Tau, which was delivered into the cultured mammalian cells by electroporation, is partially colocalized with MT and actin filaments (F-actin). We acquired the NMR spectrum of Tau in human embryonic kidney 293 (HEK-293T) cells, and compared it with the NMR spectra of Tau added with MT, F-actin, and a variety of crowding agents, respectively. We found that the NMR spectrum of Tau in complex with MT best recapitulates the in-cell NMR spectrum of Tau, suggesting that Tau predominantly binds to MT at its MT-binding repeats in HEK-293T cells. Moreover, we found that disease-associated phosphorylation of Tau was immediately eliminated once phosphorylated Tau was delivered into HEK-293T cells, implying a potential cellular protection mechanism under stressful conditions. Collectively, the results of our study reveal that Tau utilizes its MT-binding repeats to bind MT in mammalian cells and highlight the potential of using in-cell NMR to study protein structures at the residue level in mammalian cells.
doi_str_mv 10.3390/ijms20010090
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6937d27412d34ef88ab90478e259d11e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6937d27412d34ef88ab90478e259d11e</doaj_id><sourcerecordid>2331889430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-89e1e931017086670b14cd3aef3a257dbc00204d54ad8607cd4e529e073abe6f3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EoqVw44wiceFAYOxxYvuCVK34WNECKuVsOfGkm1U23toJ0v57vGyptpw88jx6NDMvYy85vEM08L5fb5IA4AAGHrFTLoUoAWr1-Kg-Yc9SWgMIFJV5yk4QKq00N6esWo7lgoah-HZ5VfycZr8rQldcu7lwoy8uz6--iuLHKqTtKsTd4Cby--Zz9qRzQ6IXd-8Z-_Xp4_XiS3nx_fNycX5RtlLpqdSGOBnkwBXoulbQcNl6dNShE5XyTZtHAukr6byuQbVeUiUMgULXUN3hGVsevD64td3GfuPizgbX278fId5YF6e-HcjWBpUXSnLhUVKntWsM5Ckob-w5p-z6cHBt52ZDvqVxim54IH3YGfuVvQm_bY2oJNRZ8OZOEMPtTGmymz61-XZupDAnK3jNMyZwj77-D12HOY75VFYgcq2NRMjU2wPVxpBSpO5-GA52n609zjbjr44XuIf_hYl_AL9km8o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331889430</pqid></control><display><type>article</type><title>In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Shengnan ; Wang, Chuchu ; Lu, Jinxia ; Ma, Xiaojuan ; Liu, Zhenying ; Li, Dan ; Liu, Zhijun ; Liu, Cong</creator><creatorcontrib>Zhang, Shengnan ; Wang, Chuchu ; Lu, Jinxia ; Ma, Xiaojuan ; Liu, Zhenying ; Li, Dan ; Liu, Zhijun ; Liu, Cong</creatorcontrib><description>The intrinsically disordered protein, Tau, is abundant in neurons and contributes to the regulation of the microtubule (MT) and actin network, while its intracellular abnormal aggregation is closely associated with Alzheimer's disease. Here, using in-cell Nuclear Magnetic Resonance (NMR) spectroscopy, we investigated the conformations of two different isoforms of Tau, Tau40 and k19, in mammalian cells. Combined with immunofluorescence imaging and western blot analyses, we found that the isotope-enriched Tau, which was delivered into the cultured mammalian cells by electroporation, is partially colocalized with MT and actin filaments (F-actin). We acquired the NMR spectrum of Tau in human embryonic kidney 293 (HEK-293T) cells, and compared it with the NMR spectra of Tau added with MT, F-actin, and a variety of crowding agents, respectively. We found that the NMR spectrum of Tau in complex with MT best recapitulates the in-cell NMR spectrum of Tau, suggesting that Tau predominantly binds to MT at its MT-binding repeats in HEK-293T cells. Moreover, we found that disease-associated phosphorylation of Tau was immediately eliminated once phosphorylated Tau was delivered into HEK-293T cells, implying a potential cellular protection mechanism under stressful conditions. Collectively, the results of our study reveal that Tau utilizes its MT-binding repeats to bind MT in mammalian cells and highlight the potential of using in-cell NMR to study protein structures at the residue level in mammalian cells.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20010090</identifier><identifier>PMID: 30587819</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Actins - chemistry ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Aqueous solutions ; Atomic structure ; Binding ; Biological activity ; Biomolecules ; Disease ; Dynamic structural analysis ; Electroporation ; Escherichia coli ; Glycerol ; HEK293 Cells ; Humans ; in-cell NMR ; Intracellular ; Kinases ; Mammalian cells ; Mammals ; MARK2 phosphorylation ; Microtubules - chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Phosphorylation ; Physiology ; Post-translation ; Protein-Serine-Threonine Kinases - metabolism ; Protein-serine/threonine kinase ; Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation &amp; purification ; Residues ; Spectrum analysis ; Structure-function relationships ; Studies ; Tau ; Tau protein ; tau Proteins - chemistry ; tau Proteins - genetics ; tau Proteins - metabolism</subject><ispartof>International journal of molecular sciences, 2018-12, Vol.20 (1), p.90</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-89e1e931017086670b14cd3aef3a257dbc00204d54ad8607cd4e529e073abe6f3</citedby><cites>FETCH-LOGICAL-c478t-89e1e931017086670b14cd3aef3a257dbc00204d54ad8607cd4e529e073abe6f3</cites><orcidid>0000-0003-3425-6672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2331889430/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2331889430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30587819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shengnan</creatorcontrib><creatorcontrib>Wang, Chuchu</creatorcontrib><creatorcontrib>Lu, Jinxia</creatorcontrib><creatorcontrib>Ma, Xiaojuan</creatorcontrib><creatorcontrib>Liu, Zhenying</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Liu, Zhijun</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><title>In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The intrinsically disordered protein, Tau, is abundant in neurons and contributes to the regulation of the microtubule (MT) and actin network, while its intracellular abnormal aggregation is closely associated with Alzheimer's disease. Here, using in-cell Nuclear Magnetic Resonance (NMR) spectroscopy, we investigated the conformations of two different isoforms of Tau, Tau40 and k19, in mammalian cells. Combined with immunofluorescence imaging and western blot analyses, we found that the isotope-enriched Tau, which was delivered into the cultured mammalian cells by electroporation, is partially colocalized with MT and actin filaments (F-actin). We acquired the NMR spectrum of Tau in human embryonic kidney 293 (HEK-293T) cells, and compared it with the NMR spectra of Tau added with MT, F-actin, and a variety of crowding agents, respectively. We found that the NMR spectrum of Tau in complex with MT best recapitulates the in-cell NMR spectrum of Tau, suggesting that Tau predominantly binds to MT at its MT-binding repeats in HEK-293T cells. Moreover, we found that disease-associated phosphorylation of Tau was immediately eliminated once phosphorylated Tau was delivered into HEK-293T cells, implying a potential cellular protection mechanism under stressful conditions. Collectively, the results of our study reveal that Tau utilizes its MT-binding repeats to bind MT in mammalian cells and highlight the potential of using in-cell NMR to study protein structures at the residue level in mammalian cells.</description><subject>Actins - chemistry</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Aqueous solutions</subject><subject>Atomic structure</subject><subject>Binding</subject><subject>Biological activity</subject><subject>Biomolecules</subject><subject>Disease</subject><subject>Dynamic structural analysis</subject><subject>Electroporation</subject><subject>Escherichia coli</subject><subject>Glycerol</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>in-cell NMR</subject><subject>Intracellular</subject><subject>Kinases</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>MARK2 phosphorylation</subject><subject>Microtubules - chemistry</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Post-translation</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Protein-serine/threonine kinase</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Residues</subject><subject>Spectrum analysis</subject><subject>Structure-function relationships</subject><subject>Studies</subject><subject>Tau</subject><subject>Tau protein</subject><subject>tau Proteins - chemistry</subject><subject>tau Proteins - genetics</subject><subject>tau Proteins - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhi0EoqVw44wiceFAYOxxYvuCVK34WNECKuVsOfGkm1U23toJ0v57vGyptpw88jx6NDMvYy85vEM08L5fb5IA4AAGHrFTLoUoAWr1-Kg-Yc9SWgMIFJV5yk4QKq00N6esWo7lgoah-HZ5VfycZr8rQldcu7lwoy8uz6--iuLHKqTtKsTd4Cby--Zz9qRzQ6IXd-8Z-_Xp4_XiS3nx_fNycX5RtlLpqdSGOBnkwBXoulbQcNl6dNShE5XyTZtHAukr6byuQbVeUiUMgULXUN3hGVsevD64td3GfuPizgbX278fId5YF6e-HcjWBpUXSnLhUVKntWsM5Ckob-w5p-z6cHBt52ZDvqVxim54IH3YGfuVvQm_bY2oJNRZ8OZOEMPtTGmymz61-XZupDAnK3jNMyZwj77-D12HOY75VFYgcq2NRMjU2wPVxpBSpO5-GA52n609zjbjr44XuIf_hYl_AL9km8o</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Zhang, Shengnan</creator><creator>Wang, Chuchu</creator><creator>Lu, Jinxia</creator><creator>Ma, Xiaojuan</creator><creator>Liu, Zhenying</creator><creator>Li, Dan</creator><creator>Liu, Zhijun</creator><creator>Liu, Cong</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3425-6672</orcidid></search><sort><creationdate>20181226</creationdate><title>In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau</title><author>Zhang, Shengnan ; Wang, Chuchu ; Lu, Jinxia ; Ma, Xiaojuan ; Liu, Zhenying ; Li, Dan ; Liu, Zhijun ; Liu, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-89e1e931017086670b14cd3aef3a257dbc00204d54ad8607cd4e529e073abe6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actins - chemistry</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Aqueous solutions</topic><topic>Atomic structure</topic><topic>Binding</topic><topic>Biological activity</topic><topic>Biomolecules</topic><topic>Disease</topic><topic>Dynamic structural analysis</topic><topic>Electroporation</topic><topic>Escherichia coli</topic><topic>Glycerol</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>in-cell NMR</topic><topic>Intracellular</topic><topic>Kinases</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>MARK2 phosphorylation</topic><topic>Microtubules - chemistry</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Post-translation</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Protein-serine/threonine kinase</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Residues</topic><topic>Spectrum analysis</topic><topic>Structure-function relationships</topic><topic>Studies</topic><topic>Tau</topic><topic>Tau protein</topic><topic>tau Proteins - chemistry</topic><topic>tau Proteins - genetics</topic><topic>tau Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shengnan</creatorcontrib><creatorcontrib>Wang, Chuchu</creatorcontrib><creatorcontrib>Lu, Jinxia</creatorcontrib><creatorcontrib>Ma, Xiaojuan</creatorcontrib><creatorcontrib>Liu, Zhenying</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Liu, Zhijun</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shengnan</au><au>Wang, Chuchu</au><au>Lu, Jinxia</au><au>Ma, Xiaojuan</au><au>Liu, Zhenying</au><au>Li, Dan</au><au>Liu, Zhijun</au><au>Liu, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2018-12-26</date><risdate>2018</risdate><volume>20</volume><issue>1</issue><spage>90</spage><pages>90-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The intrinsically disordered protein, Tau, is abundant in neurons and contributes to the regulation of the microtubule (MT) and actin network, while its intracellular abnormal aggregation is closely associated with Alzheimer's disease. Here, using in-cell Nuclear Magnetic Resonance (NMR) spectroscopy, we investigated the conformations of two different isoforms of Tau, Tau40 and k19, in mammalian cells. Combined with immunofluorescence imaging and western blot analyses, we found that the isotope-enriched Tau, which was delivered into the cultured mammalian cells by electroporation, is partially colocalized with MT and actin filaments (F-actin). We acquired the NMR spectrum of Tau in human embryonic kidney 293 (HEK-293T) cells, and compared it with the NMR spectra of Tau added with MT, F-actin, and a variety of crowding agents, respectively. We found that the NMR spectrum of Tau in complex with MT best recapitulates the in-cell NMR spectrum of Tau, suggesting that Tau predominantly binds to MT at its MT-binding repeats in HEK-293T cells. Moreover, we found that disease-associated phosphorylation of Tau was immediately eliminated once phosphorylated Tau was delivered into HEK-293T cells, implying a potential cellular protection mechanism under stressful conditions. Collectively, the results of our study reveal that Tau utilizes its MT-binding repeats to bind MT in mammalian cells and highlight the potential of using in-cell NMR to study protein structures at the residue level in mammalian cells.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30587819</pmid><doi>10.3390/ijms20010090</doi><orcidid>https://orcid.org/0000-0003-3425-6672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2018-12, Vol.20 (1), p.90
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6937d27412d34ef88ab90478e259d11e
source NCBI_PubMed Central(免费); Publicly Available Content (ProQuest)
subjects Actins - chemistry
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Aqueous solutions
Atomic structure
Binding
Biological activity
Biomolecules
Disease
Dynamic structural analysis
Electroporation
Escherichia coli
Glycerol
HEK293 Cells
Humans
in-cell NMR
Intracellular
Kinases
Mammalian cells
Mammals
MARK2 phosphorylation
Microtubules - chemistry
Nuclear Magnetic Resonance, Biomolecular
Phosphorylation
Physiology
Post-translation
Protein-Serine-Threonine Kinases - metabolism
Protein-serine/threonine kinase
Proteins
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Recombinant Proteins - isolation & purification
Residues
Spectrum analysis
Structure-function relationships
Studies
Tau
Tau protein
tau Proteins - chemistry
tau Proteins - genetics
tau Proteins - metabolism
title In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Cell%20NMR%20Study%20of%20Tau%20and%20MARK2%20Phosphorylated%20Tau&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zhang,%20Shengnan&rft.date=2018-12-26&rft.volume=20&rft.issue=1&rft.spage=90&rft.pages=90-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20010090&rft_dat=%3Cproquest_doaj_%3E2331889430%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-89e1e931017086670b14cd3aef3a257dbc00204d54ad8607cd4e529e073abe6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331889430&rft_id=info:pmid/30587819&rfr_iscdi=true