Loading…

Induction of photosynthesis under anoxic condition in Thalassiosira pseudonana and Euglena gracilis : interactions between fermentation and photosynthesis

In their natural environment, microalgae can be transiently exposed to hypoxic or anoxic environments. Whereas fermentative pathways and their interactions with photosynthesis are relatively well characterized in the green alga model , little information is available in other groups of photosyntheti...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2023-07, Vol.14, p.1186926-1186926
Main Authors: Gain, Gwenaëlle, Berne, Nicolas, Feller, Tom, Godaux, Damien, Cenci, Ugo, Cardol, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c496t-2d55056930689476fd2b9e1f347caac902fc0c8457ad4b8d005350bbf05e70153
container_end_page 1186926
container_issue
container_start_page 1186926
container_title Frontiers in plant science
container_volume 14
creator Gain, Gwenaëlle
Berne, Nicolas
Feller, Tom
Godaux, Damien
Cenci, Ugo
Cardol, Pierre
description In their natural environment, microalgae can be transiently exposed to hypoxic or anoxic environments. Whereas fermentative pathways and their interactions with photosynthesis are relatively well characterized in the green alga model , little information is available in other groups of photosynthetic micro-eukaryotes. In cyclic electron flow (CEF) around photosystem (PS) I, and light-dependent oxygen-sensitive hydrogenase activity both contribute to restoring photosynthetic linear electron flow (LEF) in anoxic conditions. Here we analyzed photosynthetic electron transfer after incubation in dark anoxic conditions (up to 24 h) in two secondary microalgae: the marine diatom and the excavate . Both species showed sustained abilities to prevent over-reduction of photosynthetic electron carriers and to restore LEF. A high and transient CEF around PSI was also observed specifically in anoxic conditions at light onset in both species. In contrast, at variance with , no sustained hydrogenase activity was detected in anoxic conditions in both species. Altogether our results suggest that another fermentative pathway might contribute, along with CEF around PSI, to restore photosynthetic activity in anoxic conditions in and . We discuss the possible implication of the dissimilatory nitrate reduction to ammonium (DNRA) in and the wax ester fermentation in .
doi_str_mv 10.3389/fpls.2023.1186926
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_694fcb953c574c01ae74fe9c72339ede</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_694fcb953c574c01ae74fe9c72339ede</doaj_id><sourcerecordid>2848846176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-2d55056930689476fd2b9e1f347caac902fc0c8457ad4b8d005350bbf05e70153</originalsourceid><addsrcrecordid>eNpdkt9u0zAUhyMEYtPYA3CDcgkXLf7vmBs0TYNVqrSbIXFnOfZJ6ym1i50U9io8LU5bpnW5ybFzvu841q-q3mM0p7RRn7ttn-cEETrHuBGKiFfVORaCzZggP18_q8-qy5wfUHk4QkrJt9UZlVwgROl59XcR3GgHH0Mdu3q7jkPMj2FYQ_a5HoODVJsQ_3hb2xic3zf6UN-vTW9y9jH7ZOpthtHFYIIpza6-GVc9lHqVjPV98XwpyABlNeG5bmH4DRDqDtIGwmD20gk8Hf-uetOZPsPl8X1R_fh2c399O1vefV9cXy1nlikxzIjjHHGhKBKNYlJ0jrQKcEeZtMZYhUhnkW0Yl8axtnHlGihHbdshDhJhTi-qxcHronnQ2-Q3Jj3qaLzeb8S00iYN3vaghWKdbRWnlktmETYgWQfKSkKpAgfF9fXg2o7tBpwtv5dMfyI9_RL8Wq_iTmPEULHgYqAHQ-9hBWV66_WO7Ml9PfblOFa3oAkRjaZ4wgr16UCtX0y7vVrqaQ8xQjBt5G6a8PF4xhR_jZAHvfHZQt-bAHHMmjSsaZjAUpRWfGi1KeacoHtyY6SnFOophXpKoT6msDAfnl_BE_E_c_Qfa8Pc6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848846176</pqid></control><display><type>article</type><title>Induction of photosynthesis under anoxic condition in Thalassiosira pseudonana and Euglena gracilis : interactions between fermentation and photosynthesis</title><source>PubMed Central</source><creator>Gain, Gwenaëlle ; Berne, Nicolas ; Feller, Tom ; Godaux, Damien ; Cenci, Ugo ; Cardol, Pierre</creator><creatorcontrib>Gain, Gwenaëlle ; Berne, Nicolas ; Feller, Tom ; Godaux, Damien ; Cenci, Ugo ; Cardol, Pierre</creatorcontrib><description>In their natural environment, microalgae can be transiently exposed to hypoxic or anoxic environments. Whereas fermentative pathways and their interactions with photosynthesis are relatively well characterized in the green alga model , little information is available in other groups of photosynthetic micro-eukaryotes. In cyclic electron flow (CEF) around photosystem (PS) I, and light-dependent oxygen-sensitive hydrogenase activity both contribute to restoring photosynthetic linear electron flow (LEF) in anoxic conditions. Here we analyzed photosynthetic electron transfer after incubation in dark anoxic conditions (up to 24 h) in two secondary microalgae: the marine diatom and the excavate . Both species showed sustained abilities to prevent over-reduction of photosynthetic electron carriers and to restore LEF. A high and transient CEF around PSI was also observed specifically in anoxic conditions at light onset in both species. In contrast, at variance with , no sustained hydrogenase activity was detected in anoxic conditions in both species. Altogether our results suggest that another fermentative pathway might contribute, along with CEF around PSI, to restore photosynthetic activity in anoxic conditions in and . We discuss the possible implication of the dissimilatory nitrate reduction to ammonium (DNRA) in and the wax ester fermentation in .</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2023.1186926</identifier><identifier>PMID: 37560033</identifier><language>eng</language><publisher>Switzerland: Frontiers</publisher><subject>Biochemistry, biophysics &amp; molecular biology ; Biochimie, biophysique &amp; biologie moléculaire ; Biologie végétale (sciences végétales, sylviculture, mycologie...) ; Chemical Sciences ; cyclic electron flow (CEF) ; Euglena gracilis ; fermentation ; hydrogenase ; Life Sciences ; or physical chemistry ; photosynthesis ; Phytobiology (plant sciences, forestry, mycology...) ; Plant Science ; Sciences du vivant ; Thalassiosira pseudonana ; Theoretical and</subject><ispartof>Frontiers in plant science, 2023-07, Vol.14, p.1186926-1186926</ispartof><rights>Copyright © 2023 Gain, Berne, Feller, Godaux, Cenci and Cardol.</rights><rights>Attribution</rights><rights>Copyright © 2023 Gain, Berne, Feller, Godaux, Cenci and Cardol 2023 Gain, Berne, Feller, Godaux, Cenci and Cardol</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c496t-2d55056930689476fd2b9e1f347caac902fc0c8457ad4b8d005350bbf05e70153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407231/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407231/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37560033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-04221387$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gain, Gwenaëlle</creatorcontrib><creatorcontrib>Berne, Nicolas</creatorcontrib><creatorcontrib>Feller, Tom</creatorcontrib><creatorcontrib>Godaux, Damien</creatorcontrib><creatorcontrib>Cenci, Ugo</creatorcontrib><creatorcontrib>Cardol, Pierre</creatorcontrib><title>Induction of photosynthesis under anoxic condition in Thalassiosira pseudonana and Euglena gracilis : interactions between fermentation and photosynthesis</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>In their natural environment, microalgae can be transiently exposed to hypoxic or anoxic environments. Whereas fermentative pathways and their interactions with photosynthesis are relatively well characterized in the green alga model , little information is available in other groups of photosynthetic micro-eukaryotes. In cyclic electron flow (CEF) around photosystem (PS) I, and light-dependent oxygen-sensitive hydrogenase activity both contribute to restoring photosynthetic linear electron flow (LEF) in anoxic conditions. Here we analyzed photosynthetic electron transfer after incubation in dark anoxic conditions (up to 24 h) in two secondary microalgae: the marine diatom and the excavate . Both species showed sustained abilities to prevent over-reduction of photosynthetic electron carriers and to restore LEF. A high and transient CEF around PSI was also observed specifically in anoxic conditions at light onset in both species. In contrast, at variance with , no sustained hydrogenase activity was detected in anoxic conditions in both species. Altogether our results suggest that another fermentative pathway might contribute, along with CEF around PSI, to restore photosynthetic activity in anoxic conditions in and . We discuss the possible implication of the dissimilatory nitrate reduction to ammonium (DNRA) in and the wax ester fermentation in .</description><subject>Biochemistry, biophysics &amp; molecular biology</subject><subject>Biochimie, biophysique &amp; biologie moléculaire</subject><subject>Biologie végétale (sciences végétales, sylviculture, mycologie...)</subject><subject>Chemical Sciences</subject><subject>cyclic electron flow (CEF)</subject><subject>Euglena gracilis</subject><subject>fermentation</subject><subject>hydrogenase</subject><subject>Life Sciences</subject><subject>or physical chemistry</subject><subject>photosynthesis</subject><subject>Phytobiology (plant sciences, forestry, mycology...)</subject><subject>Plant Science</subject><subject>Sciences du vivant</subject><subject>Thalassiosira pseudonana</subject><subject>Theoretical and</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkt9u0zAUhyMEYtPYA3CDcgkXLf7vmBs0TYNVqrSbIXFnOfZJ6ym1i50U9io8LU5bpnW5ybFzvu841q-q3mM0p7RRn7ttn-cEETrHuBGKiFfVORaCzZggP18_q8-qy5wfUHk4QkrJt9UZlVwgROl59XcR3GgHH0Mdu3q7jkPMj2FYQ_a5HoODVJsQ_3hb2xic3zf6UN-vTW9y9jH7ZOpthtHFYIIpza6-GVc9lHqVjPV98XwpyABlNeG5bmH4DRDqDtIGwmD20gk8Hf-uetOZPsPl8X1R_fh2c399O1vefV9cXy1nlikxzIjjHHGhKBKNYlJ0jrQKcEeZtMZYhUhnkW0Yl8axtnHlGihHbdshDhJhTi-qxcHronnQ2-Q3Jj3qaLzeb8S00iYN3vaghWKdbRWnlktmETYgWQfKSkKpAgfF9fXg2o7tBpwtv5dMfyI9_RL8Wq_iTmPEULHgYqAHQ-9hBWV66_WO7Ml9PfblOFa3oAkRjaZ4wgr16UCtX0y7vVrqaQ8xQjBt5G6a8PF4xhR_jZAHvfHZQt-bAHHMmjSsaZjAUpRWfGi1KeacoHtyY6SnFOophXpKoT6msDAfnl_BE_E_c_Qfa8Pc6w</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Gain, Gwenaëlle</creator><creator>Berne, Nicolas</creator><creator>Feller, Tom</creator><creator>Godaux, Damien</creator><creator>Cenci, Ugo</creator><creator>Cardol, Pierre</creator><general>Frontiers</general><general>Frontiers Media SA</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>Q33</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230725</creationdate><title>Induction of photosynthesis under anoxic condition in Thalassiosira pseudonana and Euglena gracilis : interactions between fermentation and photosynthesis</title><author>Gain, Gwenaëlle ; Berne, Nicolas ; Feller, Tom ; Godaux, Damien ; Cenci, Ugo ; Cardol, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-2d55056930689476fd2b9e1f347caac902fc0c8457ad4b8d005350bbf05e70153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biochemistry, biophysics &amp; molecular biology</topic><topic>Biochimie, biophysique &amp; biologie moléculaire</topic><topic>Biologie végétale (sciences végétales, sylviculture, mycologie...)</topic><topic>Chemical Sciences</topic><topic>cyclic electron flow (CEF)</topic><topic>Euglena gracilis</topic><topic>fermentation</topic><topic>hydrogenase</topic><topic>Life Sciences</topic><topic>or physical chemistry</topic><topic>photosynthesis</topic><topic>Phytobiology (plant sciences, forestry, mycology...)</topic><topic>Plant Science</topic><topic>Sciences du vivant</topic><topic>Thalassiosira pseudonana</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gain, Gwenaëlle</creatorcontrib><creatorcontrib>Berne, Nicolas</creatorcontrib><creatorcontrib>Feller, Tom</creatorcontrib><creatorcontrib>Godaux, Damien</creatorcontrib><creatorcontrib>Cenci, Ugo</creatorcontrib><creatorcontrib>Cardol, Pierre</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gain, Gwenaëlle</au><au>Berne, Nicolas</au><au>Feller, Tom</au><au>Godaux, Damien</au><au>Cenci, Ugo</au><au>Cardol, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of photosynthesis under anoxic condition in Thalassiosira pseudonana and Euglena gracilis : interactions between fermentation and photosynthesis</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>14</volume><spage>1186926</spage><epage>1186926</epage><pages>1186926-1186926</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>In their natural environment, microalgae can be transiently exposed to hypoxic or anoxic environments. Whereas fermentative pathways and their interactions with photosynthesis are relatively well characterized in the green alga model , little information is available in other groups of photosynthetic micro-eukaryotes. In cyclic electron flow (CEF) around photosystem (PS) I, and light-dependent oxygen-sensitive hydrogenase activity both contribute to restoring photosynthetic linear electron flow (LEF) in anoxic conditions. Here we analyzed photosynthetic electron transfer after incubation in dark anoxic conditions (up to 24 h) in two secondary microalgae: the marine diatom and the excavate . Both species showed sustained abilities to prevent over-reduction of photosynthetic electron carriers and to restore LEF. A high and transient CEF around PSI was also observed specifically in anoxic conditions at light onset in both species. In contrast, at variance with , no sustained hydrogenase activity was detected in anoxic conditions in both species. Altogether our results suggest that another fermentative pathway might contribute, along with CEF around PSI, to restore photosynthetic activity in anoxic conditions in and . We discuss the possible implication of the dissimilatory nitrate reduction to ammonium (DNRA) in and the wax ester fermentation in .</abstract><cop>Switzerland</cop><pub>Frontiers</pub><pmid>37560033</pmid><doi>10.3389/fpls.2023.1186926</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2023-07, Vol.14, p.1186926-1186926
issn 1664-462X
1664-462X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_694fcb953c574c01ae74fe9c72339ede
source PubMed Central
subjects Biochemistry, biophysics & molecular biology
Biochimie, biophysique & biologie moléculaire
Biologie végétale (sciences végétales, sylviculture, mycologie...)
Chemical Sciences
cyclic electron flow (CEF)
Euglena gracilis
fermentation
hydrogenase
Life Sciences
or physical chemistry
photosynthesis
Phytobiology (plant sciences, forestry, mycology...)
Plant Science
Sciences du vivant
Thalassiosira pseudonana
Theoretical and
title Induction of photosynthesis under anoxic condition in Thalassiosira pseudonana and Euglena gracilis : interactions between fermentation and photosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20photosynthesis%20under%20anoxic%20condition%20in%20Thalassiosira%20pseudonana%20and%20Euglena%20gracilis%20:%20interactions%20between%20fermentation%20and%20photosynthesis&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Gain,%20Gwena%C3%ABlle&rft.date=2023-07-25&rft.volume=14&rft.spage=1186926&rft.epage=1186926&rft.pages=1186926-1186926&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2023.1186926&rft_dat=%3Cproquest_doaj_%3E2848846176%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-2d55056930689476fd2b9e1f347caac902fc0c8457ad4b8d005350bbf05e70153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848846176&rft_id=info:pmid/37560033&rfr_iscdi=true